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Abstract

The k-page upward book embedding problem (kUBE)
for directed acyclic graphs (DAGs) is of significant rel-
evance to network visualization and circuit design. It
is known to be NP-complete for & > 2. This study in-
vestigates kUBE embeddability and its relationship to
vertex count, edge density, and page count. We begin
by exhaustively enumerating all small DAGs to identify
embeddability patterns, and then extend the analysis
to larger instances via representative sampling. Our
results confirm that embeddability decreases with in-
creasing graph density and improves with the number
of pages. By encoding kUBFE as a Boolean satisfiability
problem, we demonstrate the effectiveness of SAT-based
methods in addressing this computationally challenging
class of problems.

1 Introduction

The book embedding problem (BE) involves arranging
a graph’s vertices along a spine and distributing edges
across k pages without crossings on the same page [3].
The k-page upward book embedding problem (kUBE)
for directed acyclic graphs (DAGs) requires edges to be
oriented upward, relevant for applications like network
visualization and circuit routing [7,8]. While 1UBE is
solvable in linear time [13], kUBE is NP-complete for
k> 21,5
We investigate kUBE embeddability of DAGs, focus-
ing on the effects of vertex count (n), edge count (m),
and page count (k). Our research addresses:
¢ Impact of Graph Density As edge density (m/n)
increases for fixed n, does the percentage of k-page
embeddable DAGs decrease, and can we observe a
phase transition?
e Effect of Pages How does embeddability change as
k increases beyond 27
We start with small DAGs (n small), enumerating
all DAGs on n vertices, to identify any embeddability
patterns. We then consider larger DAGs (obtained via
sampling). Our analysis reveals density-driven phase
transitions and page-dependent patterns. Using a SAT-
based approach with the SAT-1 encoding [15] and the
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SAT solver Kissat [4], we efficiently verify embeddabil-
ity, providing insights into the complexity of kUBE.

2 Preliminaries

This section outlines the core concepts and techniques
used in our study. We introduce book embedding and
its upward variant for DAGs, describe methods for enu-
merating small DAGs and sampling random DAGs, and
explain the SAT-based approach for verifying embed-
dability, which underpins our experimental investiga-
tions.

2.1 Book Embedding

Definition 1 k-Page Book Embedding for Undi-
rected Graphs A book embedding of a graph G = (V, E)
consists of

1. a linear ordering w: V — {1,2,...,|V|} of vertices
along the line called the spine of a book, and

2. an assignment o : E — {1,...,k} of individual
edges to one of the k pages such that no edges as-
signed to the same page geometrically cross. More
precisely, for any two edges {ui,v1} and {us,vs}
on the same page, such that w(uy) < w(v1) and
m(ug) < w(ve), the following two conditions are
not allowed: m(u1) < m(ug) < w(v1) < 7(ve) and
m(ug) < m(uy) < w(vg) < 7(v1).

Definition 2 k-Page Upward Book Embedding
for Directed Graph An upward book embedding of a
directed graph G = (V, E) also consists of a linear order-
ingm:V = {1,2,...,|V|} of vertices along the spine of
the book, and an assignment o : E — {1,...,k} of edges
to k pages such that no two edges geometrically cross.
Additionally, all the edges should be oriented in the same
direction. That is, for any edge (u,v), w(u) < w(v) must
hold.

Definition 3 kBE Problem A k-Page Book Embed-
ding Problem (kBE) is defined as follows: Given an
undirected graph G, does there exist a k-page book em-
bedding for G ¢

Definition 4 kUBE Problem A k-Page Upward Book
Embedding Problem (kUBE) is defined as follows: Given
a directed graph G, does there ezist a k-page upward book
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embedding for G? Note that, an upward book embedding
can possibly exist in a directed graph G only if the graph
is acyclic. In other words, the graph G must be a DAG.

Figure 1 presents an example of a kKUBE problem in-
stance with three pages (i.e., k¥ = 3). The input is a
DAG with 6 nodes and 15 edges, shown in Figure la.
The goal is to embed it into three pages. The result-
ing solution is shown in Figure 1b, where the nodes are
placed in a topological order along a horizontal spine,
and edges—colored to indicate page assignment—are
drawn without crossings within the same page.

Both the kBE and kUBE problems are computation-
ally challenging, as indicated in the following theorems.

Theorem 1 For any k > 2, kBE Problem is NP-
complete. Meanwhile, 1BE can be solved in O(n) time.
This result is due to Wigderson [25].

Theorem 2 For any k > 2, kUBE is NP-complete.
Meanwhile, 1UBE can be solved in O(n) time. These
results are due to Bekos et al. [1] and Heath and Pem-
maraju [13], respectively.

2.2 Enumerating All Small DAGs

We use an algorithm that generates all DAGs for n
nodes, see Algorithm 1. It begins by initializing the
node set V.= {0,1,...,n — 1} and the set E,; of all
possible directed edges between distinct nodes. The al-
gorithm then iterates over all subsets of E,);, constructs
the corresponding graph, and checks for acyclicity via
topological sort. Subsets that form valid DAGs are col-
lected.

Given the exponential number of edge sub-
sets—reflecting the inherent complexity of enumerating
all DAGs, the algorithm adopts a brute-force approach.
Each DAG verification requires O(n?) time, resulting
in exponential time complexity overall. Additionally,
storing all DAGs demands exponential space, limiting
practical use to n < 10. Nonetheless, our implemen-
tation emphasizes simplicity and completeness. By ex-
haustively exploring edge combinations, it ensures every
DAG is generated, making it well-suited for small n or
theoretical analysis where clarity and correctness out-
weigh efficiency considerations.

Algorithm 1 Generate all DAGs with n nodes

1. Initialization : dags < [|;V « {0,1,...,n —
1} Ean + {(u,v) | u #v,u,v € V}
for all edge subsets E’ of E,; do
G + CreateGraph(V, E’)
If (IsDAG(G)) dags < dagsU {E'}
end for
return dags

2.3 Generating Random DAGs via Sampling

When n is large, generating and analyzing all possi-
ble DAGs becomes computationally infeasible due to
the exponential growth of the DAG instance space. In-
stead, we sample a subset of DAGs to study their prop-
erties, making the approach computationally manage-
able. It is crucial, however, to ensure that the sampled
subset is representative, as an inappropriate sampling
method can skew results and misrepresent the under-
lying properties of the DAG population. For example,
a biased sampling method might over-represent certain
structures—such as those with more valid topological
orderings—Ileading to inaccurate conclusions about phe-
nomena like satisfiability transitions.

To balance computational efficiency and statistical
precision, we adopt a two-tiered strategy that integrates
existing methods with our own adaptations into a cohe-
sive framework. First, we propose Algorithm 2, an ef-
ficient topological-order-based heuristic algorithm that
generates a broad set of DAGs across all edge counts
m (ranging from 0 to n(n — 1)/2) for each n. We then
complement this with targeted uniform sampling in the
critical phase-transition region using the Kuipers—Moffa
method [19]. The combination of random sampling for
broad coverage and uniform sampling for key areas en-
sures both efficiency and accuracy in our experimental
analysis.

Algorithm 2 Generate a random DAG of n nodes and
m edges

Require: n, m
Ensure: A list of m edges forming a random DAG
1. order < Shuffle([0,1,...,n —1]) > Random
permutation of nodes
2: all_edges « {(order[i],order[j]) |0 <i<j<n} >
All forward edges
3: chosen_edges < UniformSampling(all_edges, m) >
Select m edges uniformly
4: return Sort(chosen_edges)
list

> Return sorted edge

The topological-order method, detailed in Algo-
rithm 2, generates DAGs by shuffling node orders and
uniformly selecting m edges from all possible forward
edges, producing 100 DAGs per m (or 30 for high n
and k). Meanwhile, the Kuipers—Moffa method, imple-
mented via the unifDAG R package [20], ensures uniform
sampling by recursively constructing DAGs through
outpoint removal and reverse connection sampling. We
specifically use the approximate method for broad ex-
ploration across all m, reducing to 30 samples for com-
putationally intensive cases (n = 20,k > 6), and val-
idate its empirical adequacy against uniform sampling
for selected n. We switch to Kuipers—Moffa sampling in
the phase-transition region, where satisfiability is about



CCCG 2025, Toronto, Canada, August 13-15, 2025

VY
4

(a)

Figure 1: (a) A DAG with 6 nodes and 15 edges (maximal). (b) Its 3-page Upward Book Embedding (3UBE), where
edges are partitioned into three pages highlighted in black, blue, and red.

50%. In this study, we used this sampling approach to
generate DAGs for n € {7,8,...,20}, storing them as
edge lists for analysis.

2.4 SAT for Embeddability Verification

To investigate the embeddability of DAGs in the kUBFE
problem, we utilize SAT-1, a specific SAT encoding
for kUBE [15]. SAT-1 has its roots in the SAT en-
coding originally proposed by Bekos et al. [1,2] for
undirected book embedding problems. Several revi-
sions have been made to address the unique require-
ments of linear ordering of vertices and directed edges
in KkUBE problems. That is, it requires a linear order-
ing m: V= {1,...,|V]} of vertices along a spine and
an assignment o : E — {1,...,k} of edges to k pages,
such that edges are upward (i.e., 7(u) < 7(v) for all
(u,v) € E) and no same-page edges cross geometrically.

SAT-1 transforms these constraints into a Boolean
satisfiability formula called F; (G, k) in conjunctive nor-
mal form (CNF), enabling efficient verification with
modern SAT solvers. For a DAG G = (V,E) with
n = |V| vertices and m = |E| edges, SAT-1 defines
three key variable sets:

1. L(v;,v;) for vertex ordering, which is true if 7(v;) <
m(v;);

2. EP(e;,p) for edge-to-page assignments, which is
true if edge e; is on page p € {0,...,k —1}; and

3. X(e;,e;) for same-page edge pairs, which is true if
e; and e; share a page.

The formula is satisfiable if and only if G admits a valid
k-page upward embedding, with a polynomial size of
O(n% + m? + mk) variables and O(n3 + m?) clauses.

SAT-1’s strength lies in its completeness and tailored
adaptation to KUBE’s directed nature. The encod-
ing for kUBE enforces topological ordering via clauses
L(u,v) for each (u,v) € FE, ensuring upward direc-
tionality. Compared with the original encodings [1,2],
edge-crossing constraints are simplified by considering
only direction-consistent permutations (e.g., (a,c,b,d)
or (¢, a,d,b) for edges (a,b) and (¢, d)), reducing clause
overhead while maintaining correctness [1]. Transitivity
of the vertex order is enforced through CNF clauses like
[~L(v;,v;), 7 L(v;, vg), L(vi, v )], ensuring a consistent
linear arrangement. This adaptability, combined with
the efficiency of solvers, makes SAT-1 a practical tool
for embeddability testing.

We have conducted empirical evaluations of SAT-
1, providing strong evidence of its efficiency based on
benchmarks such as the North dataset (1277 DAGs,
[12]) and large grid graphs. In our current research,
we apply SAT-1 to systematically assess kKUBE embed-
dability across DAGs of varying sizes, densities, and
structural properties. This enables us to probe phe-
nomena such as phase transitions, the effect of increas-
ing k and potentially other structural factors influencing
kUBE embeddability.

2.5 Kissat: An Efficient SAT Solver

In this study, we use Kissat [4,10,11], a modern SAT
solver, to handle SAT-1. Kissat follows the conflict-
driven clause learning (CDCL) framework and incor-
porates optimizations such as inprocessing and phase
saving to improve efficiency. Its ability to handle large
constraint systems with structured variable dependen-
cies makes it particularly suitable for satisfiability prob-
lems arising in graph theory, where constraints often re-
flect structural properties of graphs. In our case, Kissat
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is used to determine the embeddability of DAGs under
kUBE constraints by efficiently exploring large search
spaces and resolving complex logical dependencies.

3 Upward Book Embeddability of DAGs

This section examines the upward book embeddability
of DAGs, analyzing small enumerable instances, theo-
retical page bounds, larger random samples, and phase
transitions, to characterize how graph size, edge density,
and page numbers influence embeddability.

3.1 Embeddability of Small DAGs

We begin by investigating the upward book embeddabil-
ity of DAGs with at most n = 6 vertices. In these small
cases, all possible DAGs can be exhaustively enumer-
ated. This examination provides significant insight and
valuable perspectives on the broader context of larger
problems.

We assess the embeddability of all enumerated DAGs
for n = 4,5, 6 using the SAT approach described in Sec-
tion 2.4. For each n, we generate all possible DAGs
with Algorithm 1, categorize them by edge count m (as
shown in Tables 2, 3, and 4), and test each instance
for k-page upward book embeddability with kK = 1 and
k = 2. The SAT-1 encoding translates a kUBE prob-
lem into a Boolean satisfiability problem, which is then
solved using a SAT solver. For each combination of
n, m, and k, we compute the percentage of satisfiable
DAGs by dividing the number of SAT outcomes (indi-
cating embeddability) by the total number of DAGs at
that m, providing the data points to plot the curves in
Figure 2.

Figure 2 illustrates the percentage of DAGs that can
be embedded using k pages as a function of the total
number of edges m, for varying numbers of nodes n. The
x-axis represents m, ranging from 0 to 15, while the y-
axis shows the percentage of satisfiable DAGs, from 0%
to 100%. Note that when n = 6, the maximal possible
m value is 15; when n = 5, the maximal m value is
10; and when n = 4, the maximal m is 6. The data
is categorized by n and k: filled circles denote n = 6,
crosses denote n = 5, and triangles denote n = 4, with
blue representing k = 1 and orange representing k = 2.

For all configurations, we have the following observa-
tions: 1) The percentage starts at 100% when m = 0, as
a DAG with no edges is trivially embeddable. As m in-
creases, the percentage decreases steadily and smoothly,
reflecting the growing complexity of the DAG. For any
specific curve with a fixed n, this indicates that em-
beddability decreases as the graph density (defined as
m/n) increases. 2) For a fixed n, the percentage of
satisfiable DAGs is consistently higher for £ = 2 (or-
ange) than for & = 1 (blue). For instance, the solid
orange line (n = 6,k = 2) remains above the solid blue

line (n = 6,k = 1) across all m, indicating that us-
ing two pages provides greater flexibility to satisfy the
DAG, and 3) When n is fixed and k is repeatedly in-
creased (i.e., the total number of pages allowed for the
embedding), there exists a threshold k value at which
all DAGs of size n are embeddable. For small DAGs
(where n = 4,5,6), these threshold k values are ob-
tained using the SAT-1 encoding and a SAT solver, and
are presented in Table 1.

Table 1: Minimal number of pages k required for all
size-n DAGs to be embeddable (n = 4,5,6).

DAG size (n) 4156
Minimal # of pages required (k) | 2 | 3 | 3

100 n=6, k=1
R 754 n=6, k=2
% n=5, k=1
s >01 n=5, k=2
3 n=4, k=1
7 25

0,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: Percentage of satisfiable DAGs as a function
of the number of edges m, for different numbers of nodes
n and pages k. Filled circles represent n = 6, crosses
represent n = 5, and triangles represent n = 4. Blue
denotes k = 1, and orange denotes k = 2.

The table explains why there are only five curves in
Figure 2. In addition, we also manually proved that
when k > 3, all n = 6 DAGs are embeddable in the
following theorem.

Proposition 3 All n = 6 DAGs can be upward book-
embedded using 3 pages.

Proof. We know that for complete cases (where each
node has an edge to every node to its right), we are
able to find a 3-upward book embedding, as shown in
the right subfigure of Figure 1. This implies that any
n = 6 DAG contains fewer edges than the “maximal
DAG”, can be embedded using 3 pages. We conclude
that all n = 6 DAGs can be upward book-embedded
using three pages. O

3.2 Embeddability of Random DAGs

When n increases, enumerating all DAGs quickly be-
comes impractical. For instance, when n = 10, the to-
tal number of DAGs is approximately 4.18 x 108 ( [24,
A003024]). To explore the embeddability properties of
larger DAGs, we rely on sampling techniques, which are
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introduced in Section 2.3, to generate random DAG in-
stances. We used this method to obtain 4,600 DAGs
with n = 10, 10,600 DAGs with n = 15, and 19,100
DAGs with n = 20, the latter of which was downsam-
pled to 5,730 instances for k > 6.

We then benchmarked SAT solver runtimes across in-
creasing values of k. The experimental setup covered
the following configurations, with the number of edges
m ranging from 0 to its maximum in all cases: (a)
n = 10, with kK = 2,3,4; (b) n = 15, with & = 2 to
7; and (c) n =20, with k =2 to 7.

Due to the prohibitively high computational cost at
these values, results for k¥ = 8 and up are not included
in the current paper. For each value of n, we analyzed
how increasing the edge count m, and thus the graph
density m/n, impacts both the embeddability of DAGs
in kUBE and the runtime of the SAT solver. Results are
presented in Figure 3, where each subfigure corresponds
to a fixed n and consists of two aligned plots: the top
shows the satisfiability rate as a function of edge density
m/n, and the bottom shows the mean run time of the
SAT solver. In both plots, the x-axis is divided into bins
of width 0.2, and the mean is calculated per bin.

Recall that (Section 3.1) when DAGs are small and
full enumeration was feasible, we identified two key pat-
terns: 1) embeddability starts at 100% with m = 0,
dropping smoothly as m increases due to the increas-
ing density of the graph (m/n), and 2) higher k values,
such as k = 2 versus k = 1, consistently improve em-
beddability by offering greater flexibility. Interestingly,
these patterns hold in our experiments with sampled
larger DAGs at n = 10, 15, and 20, where we observe
a comparable gradual decline in embeddability as edge
density grows, alongside a significant improvement in
embedding success with larger k values, closely mir-
roring the behavior of their smaller, fully enumerated
counterparts.

The bottom plots of the three subfigures, which depict
mean computation time, exhibit a consistent pattern
across all configurations of n and k:

1. For each (n,k) combination, the peak runtime is
aligned with the 50% embeddability threshold (in-
dicated by the vertical dotted line). This suggests
that computational complexity is maximized when
the proportion of SAT to UNSAT instances is ap-
proximately balanced.

2. For larger values of k, the peak runtime increases
substantially compared to smaller k. As the y-axis
uses a logarithmic scale, we can observe that the
peak runtime for k is typically one order of magni-
tude higher than that for k£ — 1.

3. Prior to the peak, the runtime differences across k
values are relatively small. Notably, there is con-
sistently a range of m/n values where higher k in-
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Figure 3: Embeddability and computational cost for
sampled DAGs with n = 10, 15, and 20. Each subfigure
consists of: (Top) Fraction of embeddable DAGs versus
edge count m, plotted for varying k£ values, showing a
consistent decline with increasing m. (Bottom) Mean
computation time aligned with m, displaying a peak
near the 50% embeddability threshold (vertical dashed
line), followed by a linear rise, with higher k values con-
sistently increasing overall times for all n.
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stances are solved faster than those with lower k.
This range tends to occur near the peak runtime
for the lower k, likely because at those m/n values,
the higher k& instances are nearly always embed-
dable—possibly even trivially so.

4. After the peak, as m/n continues to increase, in-
stances become predominantly non-embeddable. In
this regime, higher k instances consistently take
longer to solve. This is likely due to the increased
number of SAT variables and constraints intro-
duced at higher k, which makes proving unsatis-
fiability more computationally demanding.

4 Discussion and Conclusion

To recap, this study investigates the KUBE problems
for DAGs (NP-complete for k > 2), by analyzing em-
beddability across vertex count (n), edge count (m),
and page count (k). Employing exhaustive enumer-
ation of small DAGs, uniform sampling of larger in-
stances, and SAT-based verification, we derive useful
insights into the structural and computational proper-
ties of kUBE. We observe a consistent decline in embed-
dability as graph density (m/n) increases. For small
DAGs (4 < n < 6), exhaustive enumeration reveals a
smooth transition from fully embeddable at low density
to entirely non-embeddable at high density. This pat-
tern persists in larger DAGs (n < 20), where uniform
sampling confirms that sparse graphs are universally
embeddable, while dense graphs are predominantly not,
highlighting the difficulty of embedding dense structures
within limited page constraints (Figures 2, 3). Mean-
while, increasing the number of pages (1 < k < 6) sig-
nificantly improves embeddability across all values of
n. Higher values of k consistently shift embeddabil-
ity curves upward, reflecting greater flexibility in edge
assignments and enabling previously non-embeddable
DAGs to admit valid embeddings (Figures 2, 3).

The SAT-1 encoding and the Kissat solver efficiently
verified embeddability across diverse datasets, including
1,277 North Graph DAGs and 45,000 sampled instances,
managing large graphs (n = 20) despite peak computa-
tional complexities. The scalability of SAT solvers sug-
gests their potential for addressing other NP-complete
graph-theoretic problems. It is also noted that the case
k = 1 does not exhibit a computational runtime peak,
in contrast to the pronounced peaks observed for k£ > 2.
Since the k£ = 1 case is solvable in poly-time, this con-
trast suggests a possible connection between runtime be-
havior and underlying computational complexity. That
is, examining whether the presence or absence of run-
time peaks in other parameterized problems could serve
as an empirical indicator of complexity class between
poly-time solvable and NP-hard cases.

While our findings may not reveal fundamentally new
structural properties, they provide empirical confirma-
tion of a known pattern of kUBE embeddability across
varying graph densities and page counts. This reinforces
the utility of SAT-based formulations (e.g., [14]) for
systematically exploring the parameter space of hard
combinatorial problems. Although upward book em-
beddings are primarily of theoretical interest, our SAT-
based approach demonstrates practical scalability in
evaluating embeddability over large datasets. This may
support future optimization variants relevant to multi-
layer circuit design [7,17] or constrained network visu-
alization [21,23], where related abstractions are some-
times employed. Our work also aligns with broader
studies of layout models such as queue and stack lay-
outs [8], which share similar structural constraints.

A closer examination of the embeddability phase
transitions reveals a sharp decline in satisfiability from
100% to 0% at specific m/n thresholds—ranging from
0.865 for £ = 1 to 5.098 for k& = 6—which quantifies
how increasing page count permits denser DAGs to re-
main embeddable (Figure 4). Notably, these thresholds
closely align with observed runtime peaks for k& > 2, in-
dicating a tight coupling between structural transition
points and computational difficulty. In contrast, the
absence of a peak for k = 1 reflects its polynomial-time
solvability and qualitatively different runtime behavior.
These patterns suggest a potential diagnostic role for
runtime peaks in identifying complexity class transi-
tions. A full characterization of these phase boundaries,
along with their implications for solver performance and
DAG structure, is presented in the appendix.
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Appendix

The appendix provides supplementary details and analyses
that support and extend the main findings of our study on
the k-page upward book embedding problem (kUBE) for di-
rected DAGs. It includes in Section A a detailed breakdown
of the number of DAGs for small vertex counts (n < 6) across
varying edge counts, as enumerated using Algorithm 1, and
in Section B an in-depth exploration of phase transitions in
embeddability. These transitions reveal critical thresholds
in graph density (m/n) where embeddability shifts sharply,
offering insights into the structural and computational com-
plexities of kUBE.

A Numbers of DAGs with n <=6

According to the On-Line Encyclopedia of Integer Sequences
( [24, A003024]), the total number of DAGs is 25 for n = 3,
543 for n = 4, 29,281 for n = 5, and 3,781,503 for n = 6.
In fact, we employ Algorithm 1 to determine their detailed
breakdown across different edge counts (m), with the results
presented in Tables 2, 3 and 4.

Table 2: Number of DAGs with (a) n = 3, and (b) n =4
nodes, for different edge counts

(a)n=3
Edges o(1] 2 1|3
#of DAGs |1 |6 |12 | 6
b)n=4
Edges | 0 | 1 2 3 4 ) 6

# of
DAGs | 1|12 | 60 | 152 | 186 | 108 | 24
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Table 3: Number of DAGs with n = 5 nodes for different edge counts

Edges 0] 1 2 3 4

) 6 7 8 9 10

# of DAGs | 1 | 20 | 180 | 940 | 3050

6180 | 7960 | 6540 | 3330 | 960 | 120

Table 4: Number of DAGs with n = 6 nodes for different edge counts

Edges 0 1 2 3 4 5 6 7

# of DAGs 1 30 420 3600 20790 83952 | 240480 | 496680
Edges 8 9 10 11 12 13 14 15

# of DAGs | 750810 | 838130 | 691020 | 416160 | 178230 | 51480 9000 720

B Phase Transition

From our study of DAGs—whether enumerating smaller in-
stances or analyzing larger sampled ones with n = 10, 15,
and 20—a clear phenomenon emerges: the presence of a
phase transition in embeddability. In simple terms, a phase
transition refers to a sudden shift in a system’s behavior as
a key parameter changes, much like water turning to ice as
temperature drops; here, it manifests as a rapid drop from
nearly all DAGs being embeddable to nearly none as the
edge count m crosses a critical threshold.

To investigate this, one examines how a property (like em-
beddability) changes with a control parameter (such as m/n,
or graph density), looking for a sharp transition rather than
a gradual one, often marked by a specific point where the
outcome flips dramatically, for example, where embeddabil-
ity falls from 100% to near 0%. Observing this behavior in
our previous results, we now delve into a detailed study of
the phase transition, specifically using graph density (m/n)
as the control variable, to characterize how embeddability
drops sharply as m/n increases, indicating a rapid shift sim-
ilar to a phase transition, while noting that the mean run-
time peaks around this steep decline, across varying n and
k.

We used the 1,277 DAGs from the North Graph
dataset [12] along with 45,000 DAGs generated through the
sampling methods described in previous sections, analyzing
their distribution in increasing graph density from k£ = 1
to 6 in terms of embeddability (Figures 4 a—f) and runtime
(Figures 5 a-f).

Figure 4 in particular shows the percentage of embeddable
DAGs decreasing rapidly at critical m/n values: 0.865 for
k =1, 1.467 for k = 2, 2.304 for k = 3, 3.075 for k = 4,
3.930 for k = 5, and 5.098 for k = 6, as marked by the 50%
embeddability thresholds. These thresholds reveal a clear
relationship: the critical m/n at which the phase transition
occurs increases near-linearly with k, suggesting that each
additional page allows the DAG to sustain a higher density
before embeddability collapses, a trend we explore further
to quantify its implications across varying n.

Figure 5 illustrates runtime behavior across £k = 1 to 6
in subfigures (a—f), where each subfigure employs a scatter
plot to depict runtime (in seconds, on a logarithmic scale)
versus m/n for DAGs with n = 7 to 20, using distinct colors
to differentiate node sizes and highlight trends across graph
scales. For k = 2 to 6, the scatter plots reveal a pronounced
peak in runtime that aligns closely with the critical m/n val-

ues from Figure 4—1.467 for k = 2, 2.304 for k = 3, 3.075
for kK = 4, 3.930 for k = 5, and 5.098 for k = 6—where the
phase transition occurs, underscoring the solver’s peak com-
plexity during the embeddability shift. Notably, the right
side of each peak exhibits higher runtimes, as the increasing
m/n corresponds to a larger number of edges in the graph,
thereby requiring more time to verify embeddability.

The runtime behavior for & = 1 in Figure 5 differs
markedly from cases where k > 2, due to differences in com-
putational complexity. For & > 2, the NP-completeness of
kUBE leads to runtime peaks at the phase transition (e.g.,
m/n = 1.467 for k = 2, increasing to 5.098 for k = 6),
as shown in subfigures (b—f). In contrast, for k = 1, its
polynomial-time solvability results in a gradual runtime in-
crease without a peak at m/n = 0.865 in subfigure (a). This
contrast underscores that when only one page is involved,
a simpler decision process suffices, avoiding the exponential
complexity spike that arises with multiple pages.

This behavior mirrors the distinction between 2SAT and
3SAT. While 3SAT is NP-complete [16] and exhibits a pro-
nounced computational peak near its phase transition [6,22],
2SAT is solvable in linear time [9, 18] (e.g., via the im-
plication graph and strongly connected components). As
the clause-to-variable ratio in 2SAT grows, contradictions
emerge more quickly, allowing for early solver termination.
The lack of a runtime peak for the £ = 1 case similarly
reflects its polynomial solvability: contradictions or valid
embeddings become apparent and are resolved efficiently in
denser instances.
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Figure 4: Percentage of DAGs embeddable in a k-page upward book embedding as a function of graph density (m/n).
Vertical, red and dashed lines mark the 50% embeddability thresholds.
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