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Sweeping x-monotone pseudolines*

Therese Biedl� Erin Chambers� Irina Kostitsyna§ Günter Rote¶

1 Introduction

Consider an arrangement A of n x-monotone infinite
curves where each pair of curves crosses exactly once.
These define a directed acyclic planar graph GA, by re-
placing each crossing with a new vertex, adding two ver-
tices s, t at negative and positive infinity, and directing
edges left-to-right. This paper concerns the problem of
sweeping the arrangement with a rope of short length,
or equivalently, sweeping GA with a sequence of short
st-paths. Formally, we start with a rope at the lower
hull of the arrangement. At each step, whenever the
rope contains the bottom chain of an inner face F , we
may flip across F by replacing the bottom chain by the
top chain of F . We stop when the rope is the upper
hull. The rope-length of such a sweep is the maximum
length of the rope, measured as the number of edges in
the graph. See Figure 1.
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Figure 1: A pseudoline arrangement A with x-
monotone curves and the corresponding graph GA.
Rope π (red dashed) has length 8 and can be flipped
across face F .

One can easily construct an arrangement A where the
lower hull has length n, so we cannot in general hope to
find a sweep of rope-length less than n. But can we al-
ways achieve rope-length n+O(1) with a suitable sweep?
We show that this is false: for some arrangements we
need rope-length at least 7

4n − 5
4 . We also provide an
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asymptotically matching upper bound: For any such ar-
rangement A, we can find a sweep with rope-length at
most 2n− 2. Furthermore, the sweep has special prop-
erties: we simultaneously sweep the dual graph G∗

A of
GA, and the two ropes of the two sweeps “hug” in some
sense.

Finally, we study hardness results. A rope in GA cor-
responds to an edge-cut in G∗

A, and sweeping with a
rope hence corresponds to finding a vertex order that
has small cuts. This is the cutwidth problem, and
since we impose special conditions on the graph and the
sweep, our problem is equivalent to solving Directed
Cutwidth in G∗

A (definitions and details are in Sec-
tion 5). Surprisingly enough, we have not been able
to find NP-hardness results for this problem, especially
not in planar graphs. We therefore show thatDirected
Cutwidth is NP-hard even in planar graphs with max-
imum degree 6. Unfortunately the graphs constructed
in the reduction are not duals of pseudoline arrange-
ments, so the complexity of minimizing the rope-length
in our sweeping problem remains open.

Related results: The problem of minimizing the rope-
length of a sweep is motivated by the problem of enu-
merating all arrangements of n pseudolines [14]. An
easy upper bound on the rope-length in a sweep is the
maximum length of an x-monotone st-path. However,
this does not lead to a good upper bound: x-monotone
paths can have close to n2 edges [2, 11], see [10] for re-
lated results. This shows that it is necessary to choose
a sweep carefully.

The idea of “sweeping a plane graph” is closely re-
lated to the so-called homotopy height, see [3, 7, 13] for
an overview. Here we are given an undirected planar
graph G with a fixed planar embedding and two vertices
s, t on the outer-face. We are asked to find a sequence
of st-paths that begin and end with the two st-paths
that run along the outer-face. Consecutive st-paths in
the sequence must be related via a limited set of per-
mitted operations, which include flipping across a face
and introducing or eliminating a spike along an edge.
The goal is to minimize the maximum path-length in
the sequence. Our problem is hence the same as com-
puting the homotopy height, except that we restrict the
set of permitted operations since the path must follow
the edge directions.

Computing the homotopy height of a graph is in NP
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[7], but it remains open whether this problem is NP-
hard. There is also a relationship between the homo-
topy height and the height of a planar straight-line grid-
drawing [3]; in particular every N -vertex planar graph
G has homotopy height at most 2

3N +O(1) since G has
a planar straight-line grid-drawing where the smaller di-
mension is 2

3N +O(1) [8]. Unfortunately, this does not
help to solve our problem, for two reasons. First, in our
sweeps we impose stronger restrictions on when we are
allowed to flip across a face. Second, we are sweeping an
arrangement of n curves, hence the corresponding pla-
nar graph has N ∈ Θ(n2) vertices and the above bounds
are meaninglessly big.

As mentioned earlier, sweeping a pseudoline arrange-
ment A with a short rope corresponds to solving Di-
rected Cutwidth in the dual graph G∗

A. The (undi-
rected) version Cutwidth of this problem is very well-
established in the literature and is known to be NP-
hard even in planar graphs with maximum degree 3 [12].
Cutwidth is also SSE-hard to approximate within any
constant factor [15]. SSE stands for the Small Set
Expansion conjecture; we refer to this paper for the
definition of “SSE-hard” and other results concerning
cutwidth.

2 Definitions

Throughout the paper, A denotes a set of n x-monotone
infinite curves that form a pseudoline arrangement, i.e.,
each pair of curves has exactly one point in common
where the curves properly cross. The curves in A are
called pseudolines. Arrangement A naturally defines a
planar graph GA, by replacing every crossing between
pseudolines by a vertex, adding an edge whenever two
crossings are consecutive on a pseudo-line, adding two
vertices s and t that represent the points at negative
and positive infinity, and connecting s to the first cross-
ing and t to the last crossing of each pseudo-line. We
direct all edges of GA from left to right, making it a
directed acyclic planar graph with exactly one source s
and one sink t that are both on the outer-face. Such a
graph is known as a bipolar orientation, and many prop-
erties are known, see for example [9]. In particular, for
any inner face F , the boundary consists of two directed
paths; in our situation where edges are drawn left-to-
right these paths naturally are called the top chain and
bottom chain of F . Their common start-vertex is the
source s(F ) of F , and their common end-vertex is the
sink t(F ) of F . At any vertex v ̸= s, t, the incoming
edges are consecutive in the clockwise order around v,
as are the outgoing edges. In our situation with edges
drawn left-to-right, we can naturally speak of the top-
most/bottommost incoming/outgoing edge of a vertex.

A rope of A is a directed st-path π in GA; alterna-
tively we can view π as an x-monotone infinite curve

along pseudo-lines. For any two points p, p′ on π, we
use π(p, p′) to denote the sub-curve between the two
points (including p, p′). If π contains the entire bottom
chain of some inner face F , then flipping rope π across
F means to create a new rope that is π except that the
bottom chain π(s(F ), t(F )) of F gets replaced by the
top chain of F . A sweep of A consists of a sequence
π1, . . . , πk of ropes where π1 is the lower hull of A, πk is
the upper hull of A, and consecutive ropes are obtained
by flipping across an inner face. The rope-length of such
a sweep is the maximum length (measured by the num-
ber of edges) among the used ropes, and the problem
studied in this paper is to find a sweep that has small
rope-length.

Graph GA (and generally any bipolar orientation)
naturally gives rise to a dual graph G∗

A that is also a
bipolar orientation as follows. Temporarily add an edge
(s, t) to GA, and let s∗, t∗ be the two faces incident to
it, with s∗ incident to the upper hull of A. The vertices
of G∗

A are now s∗, t∗, and one vertex F for each inner
face of GA. For every edge e = u → v of GA, let Fℓ

and Fr be the faces that lie to the left and right when
walking from u to v. (Since our edges are directed left-
to-right, these faces are really above and below e, but
“left”/“right” is the established term in the literature.)
We add to G∗

A the dual edge e∗ of e, which is Fℓ → Fr.
Note that e lies on the top chain of Fr and the bottom
chain of Fℓ, so in any sweep we must have swept Fr

before we can sweep Fℓ. We think of dual graph G∗
A as

drawn such that each vertex F is placed in the corre-
sponding face of GA, and each edge e∗ crosses the edge
e that it is dual to. By definition, e∗ crosses e from left
to right.

3
4
5
6
7

2

ts
4
5
6
7

2
1

s∗

t∗

x3

1v

Figure 2: The dual graph G∗
A with a dual rope π∗ (green

dotted) that can be flipped across vertex v.

Since G∗
A is also a bipolar orientation, concepts such

as “rope” and “flipping across a face” can also be ap-
plied to G∗

A. For ease of distinction, we use the term
dual rope for a rope in G∗

A, and flipping across a ver-
tex (of GA) for the operation of flipping across a face
of G∗

A. Note that any dual rope π∗ defines an st-cut
by virtue of taking the edges of GA that it crossed (i.e.,
whose duals it contained), and symmetrically every rope
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π defines an s∗t∗-cut. Both these cuts are directed, i.e.,
contain only edges directed from the source-side to the
sink-side.

3 A lower bound

Theorem 1 For n = 3 mod 4, there exists a pseudoline
arrangement A of n x-monotone curves such that any
sweep requires rope-length at least 7

4n− 5
4 .

Proof. The construction is symmetric, and we describe
it from left to right, see Figure 3 for the construction for
n = 7 and Figure 7 (in the appendix) for n = 15. Start
with two curves c, c′ (black solid) that are at the top and
bottom at the far left and intersect in some point x. All
other curves will pass above x. Set K = n−3

4 . Between
c and c′ at the far left are 2K + 1 “top” curves (red,
dashed) at even positions, and 2K “bottom” curves
(blue, dotted) at odd positions.
In the beginning, the red curves move up and the blue

curves move down until they are separated, forming a
2K × 2K half-grid (shown shaded in Figure 3). So far
there are no intersections between curves of the same
color. In the area below all red curves and above all blue
curves, there are three faces Fℓ, Fc, and Fr, separated
from each other by c and c′.

Before the 2K+1 red curves cross c, we let the lower
K+1 of them cross each other in such a way that they all
become incident to the top chain of Fℓ. These curves,
together with c, hence create a (K+1) × (K+1) half-
grid. (In terms of sorting networks, this half-grid is the
bubble-sort network.)
In the middle, in the area above x, we do two things:

a) We cross the blue curves in such a way that they
all become incident to the bottom chain of Fc, forming
a (2K+1) × (2K+1) half-grid together with c and c′.
b) We cross the upper K with the lower K red curves
(the middle red curve remains uncrossed, as it meets all
other red curves in the half-grids above Fℓ and Fr).

The right part of the construction is symmetric. As
shown in Figure 8 in the appendix, this arrangement can
even be drawn with straight lines. Observe the following
properties of x-monotone paths in the construction:
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Figure 3: Construction for the lower bound for n = 7
(so K = 1); we need rope-length 11.

� Any x-monotone path from s to the source s(Fℓ) of
Fℓ has length at least 2K. This holds because such
a path must traverse the 2K × 2K half-grid, plus
the edge from s to reach the half-grid.

� Any x-monotone path π from t(Fc) to t has length
at least 2K + 1. This is obvious if π walks along c′

until the intersection with the last red curve (and
from there to t). So assume that it walks along c′

for i < 2K edges and then turns onto a red curve
that brings us (perhaps after some more edges)
to the half-grid right of t(Fr). It then traverses
a (2K−i) × (2K−i) half-grid, which takes 2K−i
edges, plus one more edge to t. Hence the path has
length at least 2K+1.

� Any x-monotone path from t(Fℓ) to s(Fr) has
length at least 2K, because it must go across the
(2K+1) × (2K+1) half-grid below Fc and can (at
best) use shortcuts along the bottom chain of Fc.

Now we come to the actual proof. Consider any sweep
of A. Since the dual graph has edges Fc → Fℓ and
Fc → Fr, we must flip across both Fℓ and Fr before
flipping across Fc. By symmetry we may assume that we
flip across Fr first, and consider the rope π immediately
after we flipped across Fℓ. Then π goes from s to s(Fℓ),
from there along the top chain of Fℓ to t(Fℓ), from there
to s(Fr) and t(Fc) (since we have flipped across Fr but
not Fc yet), and from there to t. So

|π| = |π(s, s(Fℓ))|+ length of top chain of Fℓ

+|π(t(Fℓ), s(Fr))|+ 1 + |π(t(Fc), t)|
≥ 2K +K+2 + 2K + 1 + 2K+1 = 7K + 4

which is at least 7n−3
4 + 4 = 7

4n− 5
4 . □

4 An upper bound: The primal-dual sweep

We now show an upper bound on the required rope-
length by defining a sequence of ropes in GA and si-
multaneously a sequence of dual ropes that “hug” the
ropes. To define this, we first need a few other defini-
tions and observations about a rope π and a dual rope
π∗ (see also Figure 4).
Rope π connects s to t, hence must go across the

directed st-cut defined by π∗, and can do so only once
since π is directed. It follows that exactly one edge e of
π is crossed by π∗; we call e the active edge and let x be
the point where it is crossed by π∗. This crossing-point
x splits the rope into two parts π(s, x) and π(x, t), and
likewise splits the dual rope into π∗(s∗, x) and π∗(x, t∗),
and the properties that we require will depend on which
part we are in.

Definition 1 We say that a rope π and dual rope π∗

hug each other if the following four (symmetric) con-
ditions hold: (1) for every edge e in π(s, x), the face
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Figure 4: A rope and a dual rope that hug each other.
We can flip across face F , which is to the left of the
active edge.

to the left of e belongs to π∗; (2) for every edge e in
π(x, t), the face to the right of e belongs to π∗; (3) for
every edge e∗ in π∗(s∗, x), the face of G∗

A (hence vertex
of GA) to the right of e∗ belongs to π; (4) for every edge
e∗ in π∗(x, s∗), the vertex of GA to the left of e∗ belongs
to π.

We will now define a sequence of rope pairs (i.e., pairs
of a rope π and a dual rope π∗) such that the ropes
sweep GA, the dual ropes sweep G∗

A, and at all times π
and π∗ hug each other. Then we argue that this implies
rope-length at most 2n − 2 at all times. We initialize
rope π as the lower hull of A, so all edges of π have t∗ to
their right. We initialize the dual rope π∗ to contain all
faces incident to s, in order from top to bottom, so all
edges of π∗ have s to their right. The active edge is the
bottommost outgoing edge of s, and one easily verifies
all conditions. (The appendix shows an example of a
sweep from the beginning.) To explain how to update
the rope pair, we need some observations.

Claim 1 (1) At any vertex v ̸= s of π(s, x), rope π
uses the top incoming edge. (2) At any vertex v ̸= t of
π(x, t), rope π uses the bottom outgoing edge. (3) At
any face F ̸= s∗ of π∗(s∗, x), dual rope π∗ crosses the
first edge of the top chain of F . (4) At any face F ̸= t∗

of π∗(x, t∗), dual rope π∗ crosses the last edge of the
bottom chain of F .

Proof. We only prove the first claim, the other three
are symmetric. Let e be the incoming edge of v on π,
and assume for contradiction that e is not top incoming.
Then the face F to the left of e is incident to two in-
coming edges of v, hence v = t(F ) and e is the last edge
of the bottom chain of F . By the hugging-condition F
belongs to π∗; the next edge on π∗ hence crosses the
bottom chain of F . But then v = t(F ) is on the t-side
of the st-cut defined by the dual rope π∗, contradicting
that v ∈ π(s, x). □

Claim 2 Let e be the active edge and let v be its head
and F be the face to its left. If F ̸= s∗ or v ̸= t, then

we can flip π across F or flip π∗ across v, and the new
pair of rope and dual rope hug each other.

Proof. The claim is illustrated in Figure 5. Assume
first that e is not top incoming, which implies that it is
the last edge of the bottom chain of F . We know that
F ̸= s∗ since all edges incident to s∗ are top incoming.
Since π(s, x) only uses top incoming edges, π must have
traversed the entire bottom chain of F and by F ̸= s∗

we can hence flip across F to get the new rope π′. The
new active edge is the first edge of the top chain of F by
Claim 1(3). The hugging-conditions could be violated
only at face F (everywhere else the rope and dual rope
are unchanged), and one easily verifies that they hold
here because all new edges of π′ have F to their right.

F

e′

e

s∗

e

e′
v

F

F ′

Figure 5: Closeup of flipping across a face and a vertex.
Dual graph not shown.

Now assume that e is top incoming, which implies
that v ̸= t since otherwise F = s∗ and not both are
allowed. Let F ′ be the face to the right of e; this is
in π∗(x, t) since e (as active edge) is crossed by π∗. All
other incoming edges of v are the last edge of the bottom
chain of the faces to their left. Applying Claim 1(4)
repeatedly, starting with F ′ ∈ π∗(x, t∗), therefore dual
rope π∗ must cross all incoming edges of v. So by v ̸= t
we can flip the dual rope across v. By Claim 1(2) rope π
continues from v along the bottom outgoing edge, which
hence becomes the new active edge. Again one easily
verifies the hugging condition, since all new edges of the
new dual rope have v to their right. □

We hence update π and π∗ as follows. Let e be the
active edge, and let v be its head and F be the face to
its left. If F = s∗ and v = t then e is the last edge of
the upper hull. By Claim 1(1) hence π is the upper hull
and the sweep is finished. By Claim 1(4) π∗ crosses all
incoming edges of t, and so the sweep of the dual is also
finished. Otherwise (either F ̸= s∗ or v ̸= t) we perform
one of the flips that exists by Claim 2 and repeat.

4.1 Analysis

The sweeping algorithm as described would actually
work for any bipolar orientation. We now show that
if the bipolar orientation comes from a pseudoline ar-
rangement A of x-monotone curves, then the rope-
length is at most 2n − 2 at all times. Enumerate the
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pseudolines from top to bottom in the order of inci-
dence with s as c1, . . . , cn. The index of an edge e is
the index of the pseudoline that supports e, i.e., along
which e runs. The following observation is trivial (it
holds since pseudolines intersect only once, so one can
go above the other only once), but will be crucial for
counting vertices later.

Observation 1 At any vertex v ̸= s, t, the indices of
incoming edges increase from top to bottom, while the
indices of outgoing edges decrease from top to bottom.

An encounter of rope π with pseudoline ci is a max-
imal sub-curve π(v, v′) that belongs to ci. Note that
v, v′ are necessarily vertices, and possibly v = v′.

Corollary 1 While walking along π(s, x), the index i of
the current edge of π can only increase, and any pseu-
doline cj encountered at the next vertex v satisfies j ≥ i.

Proof. Rope π enters along the top incoming edge of v,
hence i is the smallest index of a pseudoline incident to
v. So all pseudolines encountered at v (including the one
along which π leaves) cannot have smaller index. □

Claim 3 While walking along π(s, x), we encounter ev-
ery pseudo-line at most once.

Proof. Assume for contradiction that we encounter
pseudoline ci at least twice. At the end of the first en-
counter we hence have a vertex v with v ∈ ci ∩ π(s, x),
but π continues beyond v along some pseudoline cj with
j ̸= i. If j > i, then the index throughout π(v, x) is at
least j > i, and so we cannot encounter ci again. So
we must have j < i, which means that the outgoing
edge of π at v is below the outgoing edge along ci by
Observation 1. Therefore ci has entered the s∗-side of
the s∗t∗-cut defined by π. Since π(s, x) always uses top
incoming edges, there are no edges from the s∗-side to
π(s, x), and so ci cannot encounter π(s, x) again. □

Claim 4 At any time during the sweep, rope π has
length at most 2n− 2.

Proof. Assign to s the pseudoline along which π leaves,
and assign to every vertex v ̸= s on π(s, x) the pseudo-
line c that supports the bottom incoming edge e at v.
This assigns every pseudoline at most once, for e was
not in π(s, x) by Claim 1, and so v is the beginning
of the unique encounter of c with π(s, x). (This also
shows that c was not assigned to s). So π(s, x) has at
most n vertices, and symmetrically π(s, t) has at most
n vertices and the rope-length is at most 2n− 1.
We claim that this is not tight. Assume for contra-

diction that at some point rope π has length exactly
2n−1, so π(s, x) has n vertices and all pseudolines have
been assigned to some vertex of π(s, x). Observe that c1

must have been assigned to s, for otherwise the index of
π(s, x) would be greater than 1 throughout, so π(s, x)
could not encounter c1, so c1 would not be assigned to
a vertex. Also observe that c2 must have been assigned
to a vertex v that lies on c1, because it is not assigned
to s, and we assign (by Observation 1 and Claim 1(1)) a
pseudoline cj to a vertex v ̸= s only if π(s, x) has index
less than j when it reaches v. In particular therefore
c1 and c2 intersect at a point on π(s, x). By a com-
pletely symmetric argument, c1 and c2 intersect again
at a point on π(x, t). This is not possible in a pseudoline
arrangement. □

Theorem 2 For every pseudoline arrangement of n x-
monotone curves, there exists a sweep with rope-length
at most 2n− 2.

A few comments are in order. First, as the example
shown in the appendix illustrates, the bound is tight: for
some arrangements this particular method of computing
a sweep requires rope-length 2n− 2.

Also, our coordinated primal-dual sweep can be in-
terpreted as a left-first greedy sweep: At each stage, the
rope π selects the leftmost possible position where it can
flip over a face. The dual rope π∗ can be interpreted as
guiding the search for the sweep position: As long as a
flip is not possible at the current position of the active
edge, the active edge advances to the right, and this cor-
responds to a dual flip. Such a left-first greedy method
was used in an algorithm by Alvarez and Seidel as a tool
to count the number of triangulations [1].

5 NP-hardness

In this section, we reduce our sweep-problem to solving
Directed Cutwidth in G∗

A. Then we show that Di-
rected Cutwidth is NP-hard even in planar graphs
with maximum degree 6. Unfortunately this does not
prove the sweep-problem NP-hard since the graph that
we construct cannot be the dual graph of a pseudo-
line arrangement (it has vertices of degree 2 and many
sources and sinks).

We need a few definitions. Fix a vertex order σ =
⟨v1, . . . , vn⟩ of G. For 1 ≤ i ≤ n, the ith cut (or cut
after vi) is the set of edges (vh, vj) with h ≤ i < j.
The maximum cardinality of these cuts is the width of
the vertex order, and the cutwidth of graph G is the
minimum width over all vertex orders.

The cutwidth is defined for undirected graphs, but for
directed acyclic graphs there exists a natural restriction,
apparently first studied in [4]: The directed cutwidth of
a directed acyclic graph G is the minimum width of a
vertex order of G that is a topological order, i.e., where
every edge is directed from a lower-indexed to a larger-
indexed vertex.



37th Canadian Conference on Computational Geometry, 2025 17

Lemma 3 Let A be a pseudo-line arrangement with x-
monotone curves. Then A has a sweep with rope-length
at most w if and only if G∗

A has directed cutwidth at
most w.

Proof. We only show one direction, the other is similar.
Fix a sweep with rope-length w. This defines a sequence
σ = ⟨F1, . . . , Fk⟩ of the inner faces ofGA via the order in
which the sweep flips the rope across faces. We append
s∗ =: Fk+1 and pre-pend t∗ := F0 to this sequence since
the rope begins incident to t∗ and ends incident to s∗.
Sequence σ hence gives a vertex order F0, F1, . . . , Fk+1

of G∗
A. Any directed edge Fℓ → Fr of G∗

A is dual to
an edge e of GA that is on the upper chain of Fr and
the lower chain of Fℓ. So the sweep must flip across Fr

before flipping across Fℓ, i.e., r < ℓ. So in our face order
all edges of G∗

A are directed right-to-left, and reversing
it (which does not affect the width) gives a topological
order. Finally the edges of the ith cut are dual to the
edges of the rope after flipping across Fi, and vice versa.
Therefore the width of the topological order is the same
as the rope-length. □

So we are interested in the complexity of problem Di-
rected Cutwidth, the decision version of the prob-
lem: Given a directed acyclic graph G and an inte-
ger w, is there a topological order of width at most
w? Surprisingly, the complexity of this problem does
not appear to have been studied much in the litera-
ture. Wu et al. [15] showed that Directed Cutwidth
(not specifically named there, but appearing in row 6
of their Table 1) is SSE-hard to approximate (the con-
structed graphs are non-planar). There are also some
positive results; in particularDirected Cutwidth has
a linear-time algorithm if w is a constant [4], and for
series-parallel graphs it can be computed in quadratic
time [5]. But we have the following new result:

Theorem 4 Directed Cutwidth is NP-hard, even
in planar graphs with maximum degree 6.

Proof. The reduction is from Cutwidth, which is
known to be NP-hard, even for a planar graph with
maximum degree 3 [12]. So assume that we are given
a planar graph G with maximum degree 3 and an in-
teger w and we want to test whether its cutwidth is at
most w. We may assume that G has no isolated ver-
tices or isolated edges: They do not affect the cutwidth,
except in the trivial case that G consists exclusively of
isolated edges and vertices. We create a directed graph
H as follows (see Figure 6). We retain all vertices of G,
and replace every edge e = (v, w) by a source se and a
sink te that are both incident to both v, w. (A similar
transformation, using only a sink, was used in [15].)

We claim that G has a vertex order σG of width at
most w if and only if H has a topological order σH of
width at most 2w + 2. We sketch here a proof; details

v1 v3 v4v2

Figure 6: From a vertex order of G (black dashed) to a
topological order of H (blue solid). For ease of reading
we offset sources to be above and sinks to be below
vertices of G.

are in the appendix. To convert σG to σH , simply add
(for each edge e of G) source se just before the first
endpoint of e in σG, and sink te just after the second
endpoint of e in σG. Elementary arguments (using that
G has maximum degree 3) show that σH then has width
at most 2w + 2. To convert σH to σG, initially simply
take the induced vertex order, which is easily seen to
have width at most w + 1. This can be tight (say at
the ith cut) only if vi has no neighbours on the left
while vi+1 has no neighbours on the right. Call such a
pair (vi, vi+1) improvable: exchanging the two vertices
in the order improves the size of the ith cut and leaves
all other cuts after vertices unchanged. Exchanging all
improvable pairs hence gives the desired σG. □

6 Summary and outlook

In this paper, we studied the problem of sweeping a
pseudoline arrangement of n x-monotone curves using a
rope between the points of infinity. The only permitted
move is to flip parts of the rope from the bottom chain
to the top chain of a face, and the goal is to keep the
number of edges on the rope small. We argue that the
worst-case rope-length is in Θ(n), and specifically, at
most 2n− 2 (for all arrangements) and at least 7

4n− 5
4

(for some arrangements).

The most tantalizing open problem is the complex-
ity of finding the shortest rope, possibly for an arbi-
trary bipolar orientation instead of a pseudoline ar-
rangement. We proved NP-hardness of Directed-
Cutwidth, which is closely related to our problem via
duality. But the graph that we construct for the NP-
hardness ihas many sources and sinks, and so is not
the dual graph of a pseudoline arrangement, and prov-
ing NP-hardness of the original problem or finding a
polynomial-time algorithm for it remains open.

Our sweep by definition is monotone in the sense that
every inner face is swept exactly once. Could a shorter
rope-length ever be achieved if we are permitted to re-
verse some flips? We suspect that (as for the homotopy
height under some restrictions on the input [6]) repeat-
edly sweeping a face cannot shorten the rope-length, but
this remains open.
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Figure 7: The lower-bound construction for n = 15 pseudolines (K = 3); we need rope-length 25.
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A More details on lower bounds

Figure 7 shows the lower bound example for n = 15.
Figure 8 shows that it can be realized even as a line
arrangement.

The greedy algorithm will actually achieve ropelength
(7n− 5)/4 = 7K + 4 in these instances.

B More details on “Upper bounds”

We illustrate another example of how the sweep is per-
formed in the following sequence of figures. The con-
struction consists of n pseudolines c1, . . . , cn, enumer-
ated in top-to-bottom order at s, that satisfy the fol-
lowing:

� For any i > 1, the first crossing along ci is with
pseudoline c1.

� Let F be the face to the left of the last edge of
c1. Then the top chain of F meets all pseudolines
except c1.

See Figure 9 for the pseudoline arrangement (for n = 7)
and the initial rope and dual rope.

We show that if these conditions hold, then the rope-
length becomes 2n− 2 at some point (hence the bound
of Claim 4 is tight). To see this, observe that the first
move is to flip across a face, since the active edge (which
is the first edge of pseudoline cn) is bottom incoming.
See Figure 10.

The next few moves will all be face-flips, because the
active edge is always the first edge of pseudoline ci for
some i > 1, which is bottom incoming because it ends
at the intersection with c1. So we continue face-flips
until the active edge is the first edge of c1, and in fact
the entire rope is exactly c1. See Figure 11.
Now the active edge is on c1, hence top incoming, and

we do a vertex-flip, which pushes the active edge one
further down the rope (i.e., along c1). See Figure 12.
The next few moves will actually all be vertex-flips,

because the active edge is always on c1, hence top-
incoming if its head is not t. So we continue doing
vertex-flips until the active edge is the last edge of c1.
See Figure 13.

Now the active edge is bottommost incoming at its
head t, which means that we do a face-flip at the face F
to the left of the active edge. Recall that we constructed
our arrangement so that the upper chain of this face F

has length n − 1. Also, pseudoline c1 has n edges, of
which the rope uses all but the last one. Therefore at
this point the rope has length 2n− 2. See Figure 14.

We note that rope-length 2n−2 is not required in this
example if we sweep differently. In particular, a sweep
with rope-length n+ 1 can be obtained in this example
by applying the algorithm to the reflected arrangement
in which left and right are swapped.

C More details on “NP-hardness”

In this section, we fill in the details of the NP-hardness
proof of Section 5. Recall given a graph G, we created
the directed acyclic graph H by replacing every edge e
of G by a source se and a sink te that both are adjacent
to both endpoints of e. This doubles the degrees of all
vertices of G (so the maximum degree of H is 6). Also
the undirected version of H can be obtained by dupli-
cating all edges of G and then subdividing all edges; in
particular if G is planar then so is H.

To argue the bounds on the widths, we need some
notation. For any vertex order v1, . . . , vn of G, and any
i = 1, . . . , n, write Li [Ri] for the set of edges in G
that are incident to vi and whose other endpoint is left
[right] of vi in the vertex order. Also, let Bi be the set
of edges that bypass vi, i.e., have the form (vh, vj) for
h < i < j, and note that the cut before and after vi
have size |Bi|+ |Li| and |Bi|+ |Ri|, respectively.
For both G and H, we write C�(v) and C�(v) for the

cuts directly before and after a vertex v, respectively,
and indicate with a subscript which graph this applies
to. (The vertex order will be clear from context.)

Claim 5 If G has a vertex order v1, . . . , vn of width
w, then H has a topological order σH of width at most
2w + 2.

Proof. As sketched earlier, σH is obtained by insert-
ing, for each edge e, the source just before the left end
of e and the sink just after the right end of e. Put
differently, for i = 1, . . . , n, list all sources of edges of
Ri (in arbitrary order), then list vi, the list all sinks of
edges in Li and proceed to the next i. See Figure 6 for
an example, and verify that we indeed obtain a topo-
logical order. Also notice that scanning σH from left
to right, the cut-sizes increase when we pass a source
and decrease when we pass a sink, so the maximize cut-
size of σH must occur immediately before or after some
original vertex vi of G.

One verifies that C�
H(vi) contains exactly two edges

each for each edge in Li ∪ Bi ∪ Ri, due to edges in
C�

G(vi) and sources for edges in Ri, respectively. There-
fore |C�

H(vi)| = 2(|Li| + |Bi| + |Ri|), and by symmetry,
this is also equal to |C�

H(vi)|. Since

|Bi|+max{|Li|, |Ri|} = max{|C�
G(vi)|, |C�

G(vi)|} ≤ w,
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F` Fc Fr

Figure 8: The lower-bound example as an arrangement of straight lines. The slopes of the seven red (dashed)
and six blue (dotted) lines are evenly spaced, with red and blue slopes interleaving. This ensures the appropriate
intersection pattern when the lines are extended far enough to the left and right. In the three shaded disks, the lines
are slightly perturbed from a common intersection point so that they become incident to Fℓ, Fc, and Fr, respectively.
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Figure 9: The arrangement, with initial rope and dual
rope.
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Figure 10: The situation after the first face-flip.

the width of σH is at most 2(|Bi| + max{|Li|, |Ri|} +
min{|Li|, |Ri|}) ≤ 2w+2min{|Li|, |Ri|} ≤ 2w+2 since
|Li|+ |Ri| ≤ degG(vi) ≤ 3. □

For the other direction, we must convert a topological
order of H into a vertex order of G of small width.
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Figure 11: The situation after repeated face-flips until
the rope follows c1.
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Figure 12: The situation after the first vertex-flip.

Recall that in a vertex order of G, the pair (vi, vi+1)
(for some 1 ≤ i < n) is called an improvable pair if
Li = ∅ = Ri+1, see also Figure 15.

Claim 6 If H has a topological order σH of width 2w+
2, then in the induced vertex order v1, . . . , vn of G, the
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Figure 13: The situation after repeated vertex-flips until
the active edge is the last edge of c1.
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Figure 14: After one more face-flip, the rope length is
2n− 2.

ith cut has width at most w+1 for all i < n, and equality
holds only if (vi, vi+1) is an improvable pair.

Proof. We have to bound |Bi|+|Ri|, and will show that
all these edges, and the edges of Li, had contributed
to C�

H(vi), so there cannot be too many of them. For
e ∈ Li ∪ Bi ∪ Ri, the left end was vi or farther left,
while the right end was vi or farther right. Since σH is
a topological order, source se was strictly before vi and
sink te was strictly after vi in σH , and so in σH this
contributed two edges to C�

H(vi). Therefore

2w + 2 ≥ |C�
H(vi)| ≥ 2|Li|+ 2|Bi|+ 2|Ri|,

which implies that |C�
G(vi)| = |Bi| + |Ri| ≤ w + 1 and

equality can hold only if Li = ∅. Symmetrically arguing
via the cut before vi+1 in σH , one sees that

2w + 2 ≥ 2|C�
H(vi+1)| ≥ 2(|Li+1|+ |Bi+1|+ |Ri+1|)

and so |C�
G(vi)| = |C�

G(vi+1)| = |Li+1| + |Bi+1| ≤ w+1
and equality can only hold if also Ri+1 = ∅. □

Figure 15 shows an example where the width of the
induced vertex order σG is indeed w + 1. So we are
not done yet with the reverse direction of the reduc-
tion. But observe that if the pair (vi, vi+1) is improv-
able, then by exchanging their order all edges in Ri and
Li+1 are removed from the cut between them, except
the edge vivi+1 if it exists. Since we have excluded the
cases that vi or vi+1 are isolated vertices or vivi+1 is an
isolated edge, the cut strictly improves. All other cuts
remain unchanged. We repeat this until no improvable
pair remains. In the end, all cut-sizes are at most w as
desired, and G has cutwidth at most w.

v1 v3 v4v2

Figure 15: From a topological order of H (blue solid) of
width 2w+2 = 6 to a vertex order of G (dashed black),
but it may not have optimal width: G has cutwidth
w = 2 (see Figure 6), but the cut between v3 and v4
has width 3. Note that L3 = ∅ = R4, i.e., (v3, v4) is
improvable.

D Experimental results

We ran some computer experiments, exhaustively try-
ing all pseudoline arrangements with up to n = 9 pseu-
dolines. Each arrangement was subjected to a rather
brute-force attack to find the shortest rope-length, by
essentially looking for a path in the graph whose nodes
represent all possible ropes. The data that we found are
displayed in Table 1. For n of the form n = 4k + 3, the
results on the maximum agree with the lower bound of
Theorem 1.

n min max #PSLA
2 2 2 1
3 4 4 2
4 5 5 8
5 6 7 62
6 7 9 908
7 8 11 24,698
8 9 12 1,232,944
9 10 14 112,018,190

Table 1: min/max: The shortest and longest rope-
length required for pseudoline arrangements with n
pseudolines. #PSLA: the number of combinatorial
types of x-monotone pseudoline arrangements with n
pseudolines (sequence A006245 in the Online Encyclo-
pedia of Integer Sequences).

The lower bound is apparently n+1, except for n = 2.
The number of arrangements that require the maximum
rope-length grows very quickly. For example, among
the arrangements of 7 pseudolines, there are exactly
two that require rope-length 11, up to symmetries. On
the other hand, with 8 pseudolines, 1184 arrangements
among the 1,232,944 arrangements need rope-length 12.

https://oeis.org/A006245
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