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Straight-line Orthogonal Drawing of Complete Ternary Tree Requires
O(n'%2) Area

Hong Duc Bui*

Abstract

We prove that there is a straight-line orthogonal draw-
ing of the complete ternary tree with n nodes in a grid
with area O(n!'%32), improving the best-known bound
O(n'-118) by Ali [1]. In the special case of drawings sat-
isfying the subtree separation property, we also prove
an almost-matching lower bound Q(n':%31) of this area,
resolving a conjecture posed by Covella, Frati and Pa-
trignani [3].

1 Introduction

We consider the problem of embedding a tree into a
grid. Given a tree T and a grid G, an embedding maps
each vertex v of T to a distinct vertex v’ of G, and each
edge uv of T to a polyline u'v' of G, such that no two
polylines intersect except at endpoints.

We call such an embedding orthogonal, because all
grid lines are either horizontal or vertical. If, further-
more, the embedding satisfies that every edge uv gets
mapped to either all horizontal segments or all vertical
segments, then we call such an embedding straight-line
orthogonal. In the literature, straight-line orthogonal
embeddings in a grid are also called straight-line or-
thogonal drawings.

Determining whether a straight-line orthogonal draw-
ing of a tree exists is simple—each node of the grid has
degree at most 4, so a necessary condition is that each
node of the tree has degree at most 4, and it can be
shown that this condition is also sufficient. As such,
most research on drawings of trees is concerned with
minimizing the area of the grid, where the area is de-
fined as the number of nodes of the grid.

There has been much research on this problem, see
Table 1 for a summary. If the drawing is not required to
be straight-line (only orthogonal), [6] proves that there
exists an embedding with area O(n) for all embeddable
trees, where n is the number of nodes in the tree—this
is asymptotically optimal, because the area must be at
least n. When the drawing is required to be straight-
line, the complete binary tree can be drawn in O(n) area
by [4], and it is proven in [2] that any binary tree can
be drawn in n - 20008 %) grea, which is almost linear.

*buihd@u.nus.edu

Straight-line  Upper bound Ref.

Comp. Binary v O(n) [4]
Binary v n - 20(0g" n) 2]
Comp. Ternary v O(nt118) 1]
Ternary v O(n1579) (3]
Any O(n) [6]

Table 1: Summary of existing works on tree drawings.

For the ternary case however, the known bounds are
less tight. Prior to our work, the best known upper
bound for the complete ternary tree is O(n'-11®) [1],
improving upon an existing bound O(n!25%) [5]. The
best known upper bound for an arbitrary ternary tree
is O(n!-576) [3].

In this article, we study straight-line orthogonal draw-
ings of the complete ternary tree, and improve the upper
bound of the minimum area from O(n!!18) to O(n!-032).
Our method is based on the analysis in [3] of drawings
satisfying the subtree separation property. Drawings
with this property are more easily analyzed.

We also improve the lower bound of the area needed
in the special case of drawings satisfying the subtree
separation property to (n-%3!). This is the first non-
trivial lower bound on the area, with the trivial lower
bound being Q(n).

This article is organized as follows. In Section 2, we
formally define the notations being used. In Section 3,
we show the result of a numerical experiment that mo-
tivates the proof. In Section 4, we explain the gen-
eral proof strategy, and prove a weaker upper bound
O(n'%1) for demonstration. In Section 5, we use a
very similar proof strategy to prove the lower bound
Q(nt931). Finally, in Section 6, we describe our nu-

merical algorithm to provide a certificate of the upper
bound O(n'032).

2 Definitions

We define the notation for the complete ternary tree
following [3].

Definition 1 For each positive integer [, let T; be the
rooted complete ternary tree with | layers—that s, each
non-leaf node has exactly 3 children, and each root-to-
leaf path has ezxactly | nodes.



37" Canadian Conference on Computational Geometry, 2025

23

gou
i

:

Figure 1: Example of a straight-line orthogonal drawing
that does not satisfy the subtree separation property.
The tree (left panel, root marked in blue) is embedded in
a 4 x5 grid (right panel), and the two subtrees rooted at
the two children of the root have intersecting bounding
rectangles.

Figure 2: Illustration for T35 C (5, 6).

With this definition, 77 has 1 node, 75 has 4 nodes, etc.

We have defined straight-line orthogonal drawings of
a tree in the introduction. Now we will formally define
the subtree separation property.

Definition 2 A drawing is said to satisfy the subtree
separation property if, for every modes a and b of the
tree such that the two subtrees rooted at a and b have
no nodes in common, the smallest axis-aligned bound-
ing rectangles in the drawing containing all the nodes of
these two subtrees have mo grid nodes in common.

See Figure 1 for an illustration of a drawing that does
not satisfy the subtree separation property.
We define the following notation for convenience.

Definition 3 Given positive integers [, w and h, where
w is odd, write Ty C (w,h) if there is an orthogonal
straight-line drawing of T; in a grid with width w and
height h such that: first, the subtree separation property
is satisfied; second, the root of the tree is on the middle
vertical grid line; and third, the vertical ray from the
root to the top of the grid does not intersect any tree

nodes or edges.

See Figure 2 for an illustration that T5 C (5,6). The
red segment in the figure marks the vertical ray from
the root to the top of the grid. In order for the drawing
to satisfy the third condition of the definition above, no
nodes or edges can intersect this red segment.

We define a special class of constructions as follows,
which has the advantage of being very easy to analyze.
This is a slightly modified form of a 1-2 drawing in [3,
Section 3.

Iy ~ 90° O 'y~ 90°

1NN QOOTFZ " 90°

Iy

Ty

Figure 3: Illustration of Definition 4, with the left panel
illustrating construction 1 and the right panel illustrat-
ing construction 2.

It is easier to understand the following definition by
looking at a picture than reading the description, see
Figure 3.

Definition 4 We call a straight-line orthogonal draw-
ing of Ty a symmetric 1-2 drawing if the following con-
ditions are satisfied. Forl =1, the only symmetric 1-2
drawing is the unique drawing on the 1 x 1 grid. For
I >1, let T, and 'y be two symmetric 1-2 drawings of
Ti—1, then:

e define a drawing I'y created by construction 1 as
follows: put a copy of T'y below the root at distance
1, put two copies of ', rotated 90° to the left and
right of the root at the minimum distance such that
the subtree separation property is satisfied.

e define a drawing I's created by construction 2 as
follows: put two copies of ', rotated 90° to the left
and Tight of the root at distance 1 from the root,
then put a copy of I'y, below the root at the minimum
distance such that the subtree separation property is
satisfied.

From the definition, we get the following lemma,
which also explains the name.

Lemma 5 All symmetric 1-2 drawings have odd width,
and are vertically symmetric. Furthermore, let the size
of T be (wy, h,) and the size of Ty be (wy,hy), then
the size of T'y is c1(w,., by, wp, hy) and the size of T is
CQ(wT’7 hT‘a Wy, hb)

Where we define two functions cj, co: R* — R? by

r r 1
Cl(wr7 hrawba hb) = <2hr + Wy, % + max(%v hb + 2))7

co (W, Ny wy, hy) = (max(?hr + 1, wy), w, + hb).

As we have mentioned, the symmetric 1-2 drawings
are very easy to analyze. In particular, we can com-
pute all grid sizes (w,h) such that 7; C (w,h). The
algorithm to compute these grid sizes was given in [3,
Lemma 5]:

Lemma 6 For a fizedl, the Pareto-optimal pairs (w, h)
at level I can be computed in time polynomial in the
number of nodes of Tj.
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Figure 4: A scatterplot of all Pareto-optimal grid sizes.
Blue crosses denote construction 1, red dots denote con-
struction 2. We see from the figure that construction 1
is preferred when w > h.

We should explain what Pareto-optimal pairs mean in
this lemma. Because if w < w’ and h < h’ then T} C
(w,h) = T; C (w', k'), it suffices to consider for each
[ the pairs (w, h) such that T; C (w, h) and there exist
no pair (w’, h’) such that w’ < w, A’ < h, w'-h’' <w-h,
and T; C (w',h'). We call these pairs Pareto-optimal at
level I.

Apart from being easy to analyze, the symmetric 1-
2 drawings additionally satisfy the following properties,
which is proven in [3, Lemma 3].

Lemma 7 Given any straight-line orthogonal drawing
I of the complete ternary tree Ty, there exists a rotation
of a symmetric 1-2 drawing T whose both width and
height are no more than those of T'.

We allow 90° rotations, which swaps the width and the
height.

3 Motivation: The Pattern of the Pareto-optimal
Grid Sizes

We compute the Pareto-optimal grid sizes for small val-
ues of [:

e When [ = 1, the only pair is (1,1).
e When | = 2, the only pair is (3, 2).

e When [ = 3, there is a pair (5,5) corresponding to
construction 2, and a pair (7,4) corresponding to
construction 1.

We make a scatterplot for all the pairs for each value of
[. The result is shown in Figure 4, where both z-axis
and y-axis use a logarithmic scale.

From the figure, the pattern is obvious. Our goal is
thus to prove that the pattern continues indefinitely.

In order to do so, we need to look at how these grid
sizes were computed—the set of Pareto-optimal grid
sizes at level [ is computed only from the Pareto-optimal
grid sizes at level | — 1, independent of what happens
at earlier levels. As such, our proof will be inductive—
assume the Pareto-optimal grid sizes at level [ —1 satisfy
some bound, we prove the Pareto-optimal grid sizes at
level [ satisfy another bound.

In order to formalize these concepts, we make the
following definitions.

Definition 8 (<-relation for grid sizes) Let w, h,
w', h' be real numbers. We say (w,h) < (w',h') if
w < w and h < K. Similarly, (w,h) > (W', ) if
w>w' and h > k.

Definition 9 For any set A C R2, define the upper-
closure C(A) C R? to be C(A) = {(w,h) € R? |
A(w' b)) € A, (w',h) < (w,h)}. We say a set A is
upper-closed if A CR? and C(A) = A.

Definition 10 For each | > 1, define the set E; to be
all pairs (w,h) € Z? such that T; C (w,h). Define
Sy =C(E).

So for example, at | = 2, E; consists of all pairs of
integers (w, h) such that w is odd, w > 3 and h > 2,
while S; consists of all pairs of reals (w,h) such that
w > 3 and h > 2. We see that .S is the natural extension
of E; to the domain of all reals.

Definition 11 For any upper-closed set A C R? and
real number §, define the shift of A by 6 to be A(A,d) =
{(w-expd,h-expd) | (w,h) € A}.

Definition 12 For any upper-closed set A C R?, define
the advance of A to be

N(4) = C({Ci(wrvhmwb; he) |
(wr, he) € A, (wy, hy) € A,i € {1,2}}).

The functions ¢; and ¢, were introduced for Lemma 5.
As such, we get the following:

Lemma 13 For each 1 > 1, N(S;) = Si41.

Let A and B be upper-closed sets. We say A < B
if the “boundary” of A is below the “boundary” of B.
For example, if A = {(z,y) | x € R,y > 1} and B =
{(z,y) | € R,y > 2}, then visually, the boundary of
A is below the boundary of B. The formal definition is:

Definition 14 For two upper-closed sets A and B, we
sayA<BifADB,and A> B if AC B.

Even though the direction of < appears reversed com-
pared to the C, by the explanation above, this is the
intuitively correct direction. It is also consistent with
the < notation defined for grid sizes earlier—for (w, h)
and (w',h') € R% (w,h) < (w',h') if and only if
C({(w,h)}) < C({(w',h")}).
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4 Upper Bound: Preliminary

Using these definitions, we explain how the proof of the
upper bound proceeds. As previously explained, it will
use induction, where § is a positive real constant and
T C R? is a fixed set.?

e Base case: S, <T.

e Induction step: If S; < A(T,d) for any d > 0, then
Siy1 < A(T,d+9).

By induction, we get S; < A(T,6- (1 —1p)) for all I > .
For a suitable set T, this implies the complete ternary
tree T} can be embedded in a grid with area O(e?!) =
O(n?/1983) where n is the number of nodes in the tree
.

For example, we may use T' = S15. Then the base
case is trivially satisfied for [p = 18. The constant §
used is log(63761/35808), which is in fact the smallest
0 such that Si19 < A(Si1s,0). To compute this value
of §, we used the algorithm described in [3, Lemma 5]
to compute both Sig and Spg explicitly. We also have
2§/log3 < 1.051, therefore T; can be embedded in a
grid with area O(n!-9%1).

Now we prove that the induction step holds.

Lemma 15 Let d > 0. If N(T) < U, then N(A(T,d))
< A(U,d).

Proof. Expanding out the definitions, it suffices to
show the following. For all ¢ € {1,2}, d > 0, posi-
tive reals w,., hy., wy, hy, let (w, h) = c;(w,., by, wy, hp),
then we need to prove

c;(w, - e hy et wy - e hy - ed) <(w- ed h- ed).

So for example, when ¢ = 2, for the first component, we
need to prove

max(2h, - e + 1wy - e) < max(2h, + 1,wy) - €.

Since d > 0, e > 1 and (2h, + 1) - e? > 2h, -4 + 1.
Other cases are omitted because they are similar. O

Using this, the induction step can be proven. Since
N(T) < A(T,9), we get

N(A(T,d)) < A(A(T,d),d) = A(T, 6 + d).
The induction hypothesis gives us S; < A(T, d), so
N(S1) = Sit1 < N(A(T,d)).
Combining the two inequalities, we get S;1; < A(T,§+

d) as desired.
To complete the proof, we just need the following.

1We apologize for using T to denote a tree instead of a set in
the introduction.

Lemma 16 Let T C R? be any non-empty upper-closed
set, and ly be a fized integer. If S; < A(T,6-(1—1y)) for
all positive integers | > ly, then the area of the smallest
grid that Ty can be embedded in is O(n?%/1°83)  where
n € O(3") is the number of nodes in Tj.

Proof. Pick an arbitrary fixed element (w,h) € T. By
definition, S; < A(T,6 - (I — lp)), so (w - e>=lo) h .
e>(=l)y € ;. As such, there is a grid with area no more
than w - €5 (=lo) . . ¢8(=lo) that T} can be embedded
in, this value is O(n?%/1°%3) as needed. t

5 Lower Bound

Similarly, we will fix a set S, a positive real §, and a
positive integer /o, and prove:

e Base case: 5;, > S5}

¢ Induction step: For any [ and d, if S; > A(S,d),
then Siy1 > A(S,d + 9).

As such, for every [ > Iy, we get S; > A(S, (I —p) - 9).
For a suitable initial set S, this implies the smallest area
of a grid that T; can be embedded in is Q(exp(2§ - 1)).

This time however, the analog of Lemma 15 would be
the following (we do not need to use this in the article,
as such it is not proved):

Let d < 0. If N(S) > U, then N(A(S,d)) >
AU, d).

Note that d < 0. This means inequalities can only be
shifted “backward”, not forward. As such, we would
need to conceptually define a set S “at infinity”, then
shift it backwards. To formalize it, we give the following
definition.

Definition 17 For any upper-closed set A C R?, define
the advance at infinity of A to be

N®(A) = C’({(Qhr + wp, =+ max (4, hy))
| (wr,hr) € A, (wb,hb) € A}
U {(maux(2hr7 wp), Wy + hp)

| (wrahr) € Aa (wbahb) € A})

This  should be thought of as limg,
A(N(A(A,d)), —d)—shift A to “infinity”, advance
it, then shift it back.
Also note that N°° is invariant under A-shifting—
formally, for any real d, N*°(A(S,d)) = A(N>(S),d).
We get the following:

Lemma 18 N(S) > N°°(S). Therefore, if N*°(S) >
U, then N(S) > U.
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Figure 5: Illustration of the set S used in the lower
bound proof.

Using reasoning similar to the previous section, the
induction proceeds as follows. Assume the set S satisfies
N*(S) > A(S,6). Then assume the base case S; >
S holds, the induction step can be proven as follows.
Using Lemma 18,

N(A(S,d)) > N®(A(S, d))
= A(N®(8),d) > A(S,d + 5).

From the induction hypothesis, S; > A(S, d), so
Sit1 = N(S1) = N(A(S,d)).

Combining the two inequalities, we get S;11 > A(S,d+
d) as needed.

Now, the only remaining challenge is to construct
such a set S.

Definition 19 Fix constants ¢ > 1 and ¢ € R. De-
fine S C R? to be the upper-closure of the set of points
{exp(w,max(=*, —w-0) +¢) | w € R}. Here, we write
exp(w,n) to denote the pair (expw,expn).

Lemma 20 For constants 6 = 0.5667, ¢ = 0.10995 and
o = 2.01979, we have N*°(S) > A(S, ).

The proof will be deferred for later. In the log-log plot,
this set S is an unbounded polygon as illustrated in
Figure 5, with the vertex at exp(0, ). Using this lemma,
we get the following:

Theorem 21 Set § as above. If T} C (w,h), then w -
h € Q(n?/1983) > Q(n*0Y), where n € O(3!) is the
number of nodes in Tj.

Note that by our definition of <, the theorem only lower
bounds the area of embeddings satisfying the subtree
separation property.

Proof. Note that for [ = 2 then Sy > S.

Apply induction by the plan described above, we get
S1 > A(S, (I —1p) - 9) for all [ > 2.

Note that for every (w,h) € S then w-h > expe,
therefore for every (w, h) € A(S, (I—1p)-0) then w-h >
exp(2(l —1p)d + ¢), so we are done. O

Now we prove Lemma 20.

Proof. Pick (w,h) € N°°(S). Define w,, h,, wy, hy as
in Definition 17, then (w,, h,) € S and (wp, hy) € S.

Expanding out these conditions, we get that the as-
sumptions are, for both 7 € {0, L }:

logh, > € — logw, - T,
loghy > ¢ —logwy - 7.

We need to prove (w,h) € A(S,d). This is equivalent
to the following statement: for both 7 € {o, 1},

logh >0 +e+ (6 —logw) - 7.

In the first case (construction 1), it suffices for us to
prove for both 7 € {0, 1}:

log (%= + hy) > 0 + &+ (0 — log(2h, + wp)) - 7.

For any positive reals a and b, log(a + b) >
max(log a,logb). Define the softmax function
sm(a,b) = log(expa + expb), then the left-hand side
is > log(w, + hy) = sm(log wy, log hy).

Define w; = logw;, n; = log h; for i € {r,b}. Then we
need to prove

sm(w, —log2,mp) > d + e+ (6§ —sm(n, + log2,wy)) - 7.

With this new notation, for all 7 € {o,1} and i €
{r,b}, then
N 2 €—Wi-T.

Equivalently,
w; > (e—m)-T.

Thus, we just need to prove

sm((e =n.) -7 —log2,e —wp - T)
>0+4¢e+ (§ —sm(n, +log2,wp))T.
Set ¢ = 1, — wp, since the sm function satisfies sm(a +

d,b+d) =sm(a,b) +d for all a, b, d € R, this simplifies
to

sm((e — )T —log2,¢)
> (14 7)0+e—sm(p+log2,0)T.
Equivalently, since 1+ 7 > 0,

sm((e — )T —log2,e) — e + sm(p + log 2,0)

0 <
- 1+71
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The right hand side only contains one variable . We
define the function fo () to be the right hand side,
and we wish to compute the minimum of f, .. Notice
that fg . (¢) = 0 has an unique solution

(7 —1)e—log4
[ 1+7

and this can be shown to be the global minimum of fj -.

At this point, the value of f, . is > 6 for both 7 = o

and 7 = L, so we are done.

o

In the second case (construction 2), we need to prove:
log(wy + hy) > 6 + € + (6 — log(max(wp, 2h;))) - T.
This simplifies to
sm(wyp,mp) > 6+ (14 7) + & — max(wp, 7 + log2) - 7.
Doing exactly as above, we just need to prove
sm((T — 1)e — 7, —wpT)
>6-(1+71)— max(wp,nr +1og2) - 7.

Set ¢ = 1, — wp again, this further simplifies to

sm(0, (7 — 1)e — ¢71) + max(0,p + log2) - 7

0 <
- 1+
Set fl,T(@) = W and f2,7'(<p) =
sm(0,(r—1)e—pT7)+(p+log2)-7

s , notice that fq , is decreas-
ing, f2r is increasing, and the equation fi .(p) =
f2.7(¢) has a unique solution ¢ = —log 2, at this point

sm(0, (1 — 1)e 4+ 7log 2)

fi(9) = fa(p) = 1+r .

As such, max(f1,-(¢), f2,-(¢)) has a global minimum at
this point. For both 7 € {o, 1}, this value is > 6. O

We are unable to obtain a closed-form formula for
these constants. However, it can be efficiently com-
puted to arbitrary precision using software such as
Mathematica—mnamely, find the values of o, € and ¢
such that

§= fl,o(_10g2) = f1,1/a(—1082)

1/0 — —log4
=f0,1/a((/ 1_?18/0 g >, (1)

then it can be confirmed that foyg(W) > 4.

6 Numerical Proof for Improved Upper Bound

In Section 4, we improved the upper bound on the min-
imum area required for a straight-line orthogonal draw-
ing of T;. In order to do so, we used a certain upper-
closed set T satisfying N(T) < A(T,0) for a constant
0 < 0.577. Specifically, we used T' = Si5.

If we use a different set T such that N(T') < A(T, ')
for a smaller constant §’, we would be able to improve
the upper bound accordingly. In order to simplify the
analysis, we use the following.

Lemma 22 Fixz an wupper-closed set T such that
C({1,1}) < T, and a constant 6 > 0. If N°(T) <
A(T,9), then for alle > 0, there exists sufficiently large
d > 0 such that N(T") < A(T",6 +¢) for T' = A(T, d).

Proof. Unrolling the definition, we need to prove that
with notation as above, for every (w,h) € A(T”,d + ¢),
then (w, h) € N(T").

The statement (w,h) € A(T",§ + ¢) is equivalent to
w = exp(d+d+e)w’, h = exp(d+d+e)h’ for (w',h') € T.

By assumption, N°°(T') < A(T,4d), so N*(A(T,d +
€)) < A(T, d+d0+¢), which means (w, h) € N (A(T, d+
€)). Expanding out the definition of N°°, this means
there exists (w., h,) and (wp, hy) € A(T,d + ¢€) such
that either

w = 2h, +w, and h = %+max(%,hb> (2)

or
w = max(2h,, wp) and h = w, + hy,. (3)

The statement we need to prove is (w,h) € N(T").
With (w,., h,) and (wy, hyy) as above, we get

(wy/expe, h,/expe), (wp/expe, hy/ expe) € T'. (4)

In the first case where Eq. 2 holds, we will use Eq. 4 to
get:

2h, +w, W, Wy he 1
R + max( R + f)
expe ' 2expe 2expe’ expe 2

e N(T").

We will show that it is possible to pick d large enough

such that both w > Q’Qﬂ and h > 5oo— +
Xp € exp e

Wy hy

max( + 1) holds. Assume otherwise. Since

2expe’ expe

2h.,.+w Wy Wy
g > O7 w Z Tgb alWayS, SO -5 +maX(7,hb) <

Yr 4 max(gee—, M4 1y 5o max( ) <

2expe 2expe’ expe
Wy hy 1 Wy hy 1
max(%xpa, o T 5). Therefore %= < oz T3 80
Wy hy 1y _ _hy 1 hy 1 -
maX(2exp6’ exp e + 2) T expe + 27 S0 hb < exp € + 2

hy < m. Since (wp, hy) € A(T,d + ¢€) and
C({1,1}) < T, by picking d large enough, we can make
hy < m impossible. Note that d still only de-
pends on € and not on hy.

When Eq. 3 holds instead, we use Eq. 4 to get

2h,. r+h
(max( 41, ), wr t b) e N(T").
expe expe/’ expe

Proceed similarly. O
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We now explain how the set T was found. Consider
the set S in Section 5. With values of o, ¢ and § satis-
fying Eq. 1 exactly, we get S < A(N°°(S), —4). Define
the operator P(S) = A(N>(S),—6) and let P*(S) be
P applied k times on S, then we get S < P(S), which
means P*(S) < P**1(9) for all k, and we conjecture
the following based on numerical evidence:

Conjecture 1 limy_,, P*(S) = {(w,h) | b > f(w)}
for an analytic function f such that f(expw) — (e —w -
) = 0 asw— —o0 and f(expw) — (¢ —w/o) — 0 as
w — 400. Furthermore, let P> (S) denote that limiting
set, then P(P>(S)) = P*>(S).

Such a function f must satisfy a certain functional
equation; however, we are unable to solve it or prove
that the solution exists. If the conjecture holds, pick
T = A(P>(S),d)NC({w, h}) for some large d and suit-
able w and h, we get N°°(T) < A(T,¢), which would
have implied the area is € é(n%/ 1o¢3)  However, we are
only able to find a numerical approximation of 7" that
gives the bound O(n!:%32).

The algorithm to compute the certificate T for the
upper bound computes P*(S) for a sufficiently large
number k, with some approximations and linear inter-
polations to make the time complexity manageable, and
we only iterate on cg in the initial iterations, which
heuristically have better numerical stability.

7 Conclusion

In this article, we improve the upper bound on the min-
imum area required for a straight-line orthogonal draw-
ing of the complete ternary tree, and prove an almost-
matching lower bound in the special case of drawings
satisfying the subtree separation property.

There are still several interesting open questions that
need further research, namely whether there is a non-
trivial lower bound when the drawing is not required to
satisfy the subtree separation property, and whether the
constant can be determined analytically to prove that
our lower bound is tight.
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