
62 CCCG 2025, Toronto, Canada, August 13–15, 2025

PTAS for Stabbing Unit Squares and Variants

Tanmay Inamdar* Sounak Modak� Kushal Singanporia�

Abstract

In this article, we consider the problem of finding a min-
imum number of horizontal segments, such that each of
the given rectangles is stabbed by at least one chosen
segment (i.e., the segment intersects both vertical sides
of the rectangle). This problem was first studied by
[Chan et al., ISAAC 2018], who gave an O(log log n)-
approximation for the problem, by observing that it
can be modeled as a special case of a geometric hit-
ting set problem in R3, which was known to admit an
O(log log n)-approximation. To the best of our knowl-
edge, no subsequent improvement over this result is
known. In this work, we design a polynomial-time ap-
proximation scheme (PTAS) for the problem, in the
special case when the given rectangles are in fact dis-
joint unit squares, and the horizontal segments have a
bounded length. We also design a PTAS for the Maxi-
mum Coverage variant of the setting, where the goal is
to stab the maximum number of squares using at most
k horizontal segments. In spite of multiple restrictions
imposed on the input, our results constitute as the first
step towards improving the O(log logn)-approximation
for stabbing arbitrary rectangles by arbitrary horizon-
tal segments. Finally, we sketch an extension of our
PTASes to the setting where the bounded-length seg-
ments can be vertical as well as horizontal. We note
that this complements a known APX-hardness result
when the segments can have unbounded length.

1 Introduction

In the Set Cover problem, the input consists of a set
system (U ,F), where U is a finite universe of size n, and
F is a family of subsets of U , and the aim is to find a
minimum-size sub-family F ′ ⊆ F whose union covers
the universe. Due to its wide applicability, Set Cover
is perhaps the most important combinatorial optimiza-
tion problem. In the seminal work of Karp [12], it was
shown to be NP-hard. Faced with this intractability, the
problem has received significant attention in the field of
polynomial-time approximation algorithms, where the

*Indian Institute of Technology Jodhpur
taninamdar@gmail.com

Supported by IITJ Research Initiation Grant (grant number
I/RIG/TNI/ 20240072

�Institute of Mathematical Sciences
sounakmodak@gmail.com, kushal03132@gmail.com

goal is to design efficient algorithms that provably out-
put solutions within a certain guaranteed factor from an
optimal solution. In this regime, it is well-known that
a greedy algorithm achieves an approximation factor of
lnn+1 [16], and moreover this factor is essentially tight,
assuming P ̸= NP [5].

However, this is not the end of the research for ap-
proximability of Set Cover. In fact, there are a large
number of set systems whose structure allows us to over-
come the lower bound of Ω(log n), and achieve near-
constant approximation factors, e.g., [1, 2, 4, 7, 10, 15,
17, 18]. One of the most prominent classes of exam-
ples that have shown remarkable success along this line
comes from computational geometry. Informally speak-
ing, Geometric Set Cover refers to an instance of
Set Cover, where the set system has an underlying
geometric realization. A classic example is when each
element of the universe corresponds to a point, say in
R2, and each set in the family corresponds to the subset
of points contained in a certain kind of geometric ob-
ject, e.g., unit disk. In the “dual” setting, the roles of
points and geometric objects are reversed – the goal is
to find the smallest set of points such that each geomet-
ric object contains at least one of the selected points.
This setting is known as piercing or hitting of geomet-
ric objects by points. Although the exact terminology is
different based on the roles of geometric objects playing
the roles of elements and sets, they all fall in the broad
umbrella of Geometric Set Cover.

Motivated from applications in resource allocation
and scheduling, the special case of Geometric Set
Cover, where the goal is to find the minimum num-
ber of lines/segments in the plane that cross all
of the given rectangles has been extensively studied
in both approximation algorithms and parameterized
complexity. In this setting, the rectangles as well
as lines/segments are typically restricted to be axis-
parallel, and a line/segment that intersects two parallel
sides of a rectangle is said to stab the rectangle. There
are different variants of rectangle stabbing problems,
based on (1) whether the rectangles are disjoint or over-
lapping, (2) lines/segments are vertical, horizontal, or
both, and (3) whether a set of lines/segments is explic-
itly given in the input, or the solution can contain any
line/segment in the plane. Much of the early research in
this area considered lines rather than segments, and the
set of lines was not explicitly given in the input. Gaur et
al. [9] designed a 2-approximation for stabbing arbitrary

37th Canadian Conference on Computational Geometry, 2025 63

rectangles with (non-given) horizontal and vertical lines,
which remains the best approximation for the problem
to this day.

More recently, Chan et al. [3] initiated the study of
stabbing with segments instead of lines. They consid-
ered different variants, including a variant where the
goal is to minimize the total length of the horizontal
segments to stab all the rectangles, for which they de-
signed a constant-factor approximation, which was sub-
sequently improved to a quasi-polynomial-time approx-
imation scheme (QPTAS) in an unpublished work of
Eisenbrand et al. [6], and later to a polynomial-time
approximation scheme (PTAS) by Khan et al. [13]1.
Among the different variants of rectangle stabbing
[11, 13] by segments introduced in [3], the most rele-
vant to this work is the one called Cardinality Stab-
bing, where the set of horizontal segments is given in
the input, and the goal is to find a minimum number of
segments that stab all of the given rectangles. Chan et
al. [3] showed that this variant is APX-hard, and gave
an O(log logn)-approximation in polynomial time.

Our Results. The aforementioned approximation al-
gorithm of Chan et al. [3] for Constrained Stabbing
works even when the rectangles can be of arbitrary
sizes and may intersect each other, and the input
segments can have arbitrary length. To the best of
our knowledge, prior to our work, it was not known
whether one can improve upon the O(log log n) factor
by restricting the input. In this work, we consider
the following special case of Constrained Stabbing.
Stabbing Disjoint Unit Squares

Input: An instance I = (R,S), where R is a set of n
axis-parallel, disjoint unit squares and S is a set of m
horizontal segments, each of length at most d.

Question: Find minimum-size S ′ ⊆ S such that S ′

stabs all n squares of R.

Note that, this is a considerable restriction of the orig-
inal setting, since a segment of length at most d can stab
at most d disjoint unit squares. Therefore, the classi-
cal greedy algorithm for Set Cover already gives a
(ln d + 1)-approximation in our setting. Our contribu-
tion here is to improve the approximation ratio to 1+ ϵ.
More formally, our main result is the following.

Theorem 1 For any ϵ > 0, there exists an algorithm
that takes an instance of Stabbing Disjoint Unit
Squares, runs in time mO(d log d/ϵ2) ·nO(1) and returns
a (1 + ϵ)-approximation.

1A QPTAS is an (1 ± ϵ)-approximation algorithm that runs
in 2(logn)cf(1/ϵ) for any fixed ϵ > 0, where c ≥ 1 is a constant.
A PTAS is a special case where c = 1, which notably runs in
polynomial time.

At a high level, this result is based on the classical shift-
ing strategy introduced by Hochbaum and Maass [10].
At a high level, we first divide the given instance into
a set of vertical sub-instances of width O(d/ϵ), via a
straightforward application of shifting strategy. Then,
we further horizontally sub-divide each vertical sub-
instance into even smaller sub-instances whose optimal
solution is bounded by O(d log d/ϵ2), enabling us to ef-
ficiently find it via exhaustive enumeration. The second
step in our approach is inspired from a PTAS by Eisen-
brand et al. [6] for minimizing the total length of the
segments. We note that, although we follow a simi-
lar roadmap, we have to handle several nuances due to
the significant differences between the two problems. In
Section 3, we prove Theorem 1 by formally stating the
algorithm and its analysis. Subsequently, we also sketch
an approach that can extend to the setting where the
given segments of length at most d can be vertical as
well as horizontal.

Next, we consider the “Max Coverage” variant of
Stabbing Disjoint Unit Squares, defined as follows.

Maximum Stabbing of Disjoint Unit Squares

Input: An instance I = (R,S, k), where R is a set of
n axis-parallel, disjoint unit squares, S is a set of m
horizontal segments, each of length at most d, and k is
a non-negative integer.

Question: Find a subset S ′ ⊆ S of size at most k,
such that S ′ stabs the maximum number of squares
from R.

For this version, we design a PTAS using a combina-
tion of the shifting strategy and dynamic programming,
which is inspired from the work of Gandhi et al. [8].
More formally, we prove the following theorem in Sec-
tion 4.

Theorem 2 For any ϵ > 0, there exists an algorithm
that takes an instance of Maximum Stabbing of Dis-
joint Unit Squares, runs in time nO(d/ϵ2) and re-
turns a (1 + ϵ)-approximation.

We will also sketch an adaptation of this algorithm to
handle vertical segments.

Finally, it will be apparent from our proof that both
of our algorithms can also be adapted to the setting
where the input consists of disjoint rectangles, where
the length and breadth of rectangles are Θ(1). Due to
space constraints, some of the proofs are deferred to the
appendix.

2 Preliminaries

We assume that squares are closed sets, i.e., their
boundaries are included. We assume, without loss of
generality, that no segment or square boundary lies at

64 CCCG 2025, Toronto, Canada, August 13–15, 2025

an integer y-coordinate; this can be ensured via an ap-
propriately shifting the origin. For expressions such
as d

ϵ that may not be integers, we assume throughout
that they are rounded up using the ceiling function,
i.e.,

⌈
d
ϵ

⌉
, wherever necessary. We note that the total

number of segments m can be reduced to O(n3) by re-
stricting attention to segments aligned with specific x
and y coordinates corresponding to square boundaries.
Each segment can be shifted vertically to lie in one of
O(n) “equivalence classes” given by the top/bottom y-
coorindates of any of the n squares, or the intervals
between them. Next, we restrict the left and right end-
points of each segment such that they align with the
left/right boundary of a square. Note that these oper-
ations can be performed without changing the set of
squares stabbed by each segment. This bounds the
number of segments by O(n3).

3 A PTAS for Stabbing Disjoint Unit Squares

Throughout this section, we fix an optimal solution O ⊆
S of size OPT(I).

3.1 Algorithm Overview

Our (1+ϵ)-approximation algorithm proceeds as follows,
with each step justified by structural lemmas.

� Select a suitable vertical offset z and remove the
rectangles intersected by the corresponding vertical
lines Lz. (Lemma 3)

� Stab the removed rectangles using a segment set
SE ⊆ S of cost O(ϵ ·OPT(I)). (Lemma 3)

� In each strip, perform a horizontal sweep to select a
set Sh of segments that induce sub-instance bound-
aries. (Lemma 5)

� Solve each sub-instance via brute-force over small
segment subsets.

� The total solution cost remains bounded by (1 +
c′ϵ) ·OPT(I). (Lemma 4)

Now, we proceed to a formal description of each of the
steps. We introduce a family of vertical lines to help
partition the instance into simpler parts. For any in-
teger offset z ∈ [0, d

ϵ), let Lz denote the set of vertical

lines with x-coordinates given by z + i · d
ϵ for i ∈ Z.

The offset z determines the horizontal shift of this reg-
ularly spaced grid of lines across the instance. In the
analysis that follows, we use a probabilistic argument to
show that some value of z yields favorable partitioning
properties.
The goal of introducing Lz is to partition the set of

rectangles into vertical regions such that each optimal
stabbing segment interacts with only a limited portion
of the input. This decomposition localizes the problem

x = z x = d
ϵ + z x = 2d

ϵ + z

Figure 1: Squares intersecting the lines of Lz are shown
as shaded blue squares. For each such square, we se-
lect an arbitrary segment that stabs it (shown in red).
These segments, along with other rectangles they stab—
even those contained strictly between the lines of Lz

(shown as shaded green)—are not part of any of the
sub-instances. However, the remaining segments (e.g.,
dashed orange segment) that cross the lines of Lz will
be part of both sub-instances.

and allows us to bound the number of segments needed
within each region, enabling more efficient solutions.

For a given value of z, let Ez denote the subset of
squares in R that are intersected (stabbed) by the ver-
tical lines of Lz. We now claim the following.

Lemma 3 [Good-z Value] There exists a value 0 ≤
z < d

ϵ , satisfying that the number of squares of O that
intersect any line of Lz is at most ϵ ·OPT(I). Further-
more, for such a z, we can find in polynomial time a
subset SE of line segments from S that stabs all square
in Ez, such that the total number of segments in SE is
at most ϵ ·OPT(I).

Since we have shown that a suitable value of z exists,
we can evaluate all z values in the range [0, d/ϵ). From
this point onward, we assume that such a z has been
fixed, and we work with the corresponding set of verti-
cal lines Lz. After removing the squares in Ez and the
segments used to stab them, some segments may remain
that intersect vertical lines in Lz and stab squares from
two adjacent vertical strips. Such segments may ap-
pear in more than one sub-instance and can be double-
counted in the analysis. We also remove any additional
squares that are stabbed by the segments used for Ez,
even if those squares are not themselves in Ez. We now
show that this potential overcount is bounded, and that
the total cost over all sub-instances remains within a
small fraction of OPT(I).

To formalize this, we define the vertical sub-instances
that remain after the removal step described above. Let
I1, I2, . . . , Iq denote these sub-instances for some q > 0,
where each Ij = (Rj ,Sj) is defined as follows: Rj is the
set of squares fully contained within the j-th vertical
strip, and Sj is the set of segments that lie fully or
partially within that strip.

37th Canadian Conference on Computational Geometry, 2025 65

Lemma 4 [Crossing Segments] The total opti-
mal cost across all vertical sub-instances satisfies:∑q

j=1 OPT(Ij) ≤ (1 + c′ϵ) ·OPT(I), for some constant
c′ > 0.

We consider a specific sub-instance Ij = (Rj ,Sj),
and in the next lemma, we describe how to sub-divide
it further that will ultimately help us obtain a (1 + ϵ)-
approximation for the sub-instance.

Lemma 5 (Strip Partitioning and Sh Bound)
There exists a set of horizontal segments Sh ⊆ S of size
at most ϵ · OPT(Ij), computable in polynomial time,
that stabs a subset of R and partitions the remaining
squares within each strip into disjoint rectangular
sub-instances.

Proof. Initially, all segments and squares are un-
marked. We process the segments according to their
y-coordinates in increasing order. At each y-coordinate
corresponding to a segment s, we run the (ln d+1)-factor
approximation algorithm for the set cover instance given
by all unmarked segments whose y-coordinate is at most
that of s, and all unmarked squares stabbed by such seg-
ments. Note here that since each segment can stab at
most d unit squares, greedy algorithm gives the desired
guarantee. The process stops at a segment s∗, when
the approximation algorithm on the corresponding sub-
instance returns an output of size at least d(ln d+1)/ϵ2.
At this point, (1) we add all unmarked segments whose
y-coordinate is equal to that of s∗ to Sh, (3) create
a sub-instance Ij,1, consisting of all unmarked squares
and unmarked segments inside the vertical strip be-
low the y-coordinate of s∗, and finally (3) mark all the
squares and segments that were part of the last call to
the approximation algorithm corresponding to s∗.
Note that for the segment s′ just before s∗, the size

of the approximate solution was strictly smaller than
d(ln d+1)/ϵ2. Now, observe that the set of squares that
are newly introduced in the sub-instance corresponding
to s∗ are those unmarked squares that are only stabbed
by segments at the same y-coordinate as s∗. It is easy
to see that the number of such squares is bounded by
d/ϵ. Therefore, the size of optimal solution for the sub-
instance is at least d/ϵ2, and at most d(ln d + 1)/ϵ2 +
d/ϵ = O(d log d/ϵ2).

Now, we continue this procedure to create the
sub-instances Ij,2, . . . , Ij,t. Moreover, we have∑t

i=1 OPT(Ij,i) ≤ OPT(Ij), since the sub-instances
Ij,i are independent.
The overall algorithm runs in polynomial time since it
iterates over polynomially many segments and invokes a
polynomial-time approximation algorithm at each step.
Since at each step, at most d/ϵ segments are added to Sh

only after the size of optimal solution of the sub-instance
below is at least d/ϵ2, we can bound the number of

added segments as follows:|Sh| ≤
∑t−1

i=1 ϵ · OPT(Ij,i) ≤
ϵ ·OPT(Ij). □

Now we have all the ingredients required to prove
Theorem 1. Due to space constraints, we give a formal
proof in the appendix. Note that the running time is
dominated by the time required to brute-froce in each of
the smaller sub-instances, where the size of the optimal
solution is bounded by O(d log d/ϵ).

Handling horizontal as well as vertical segments. We
now sketch the modifications required to extend our
PTAS to work in the setting where the segments may
be vertical as well as horizontal. First, we increase the
range of z values to [0, cd ln d

ϵ) for some suitably large
c ≥ 1. Note that this also makes the horizontal distance
between two consecutive lines of Lz to be Θ(d log d

ϵ). We
consider a vertical strip of width 2 centered around each
line of Lz, and say that a horizontal (resp. vertical) seg-
ment is bad if it crosses a line of Lz (resp. if it lies
within the strip of width 2 around a line of Lz). Note
that each segment is bad w.r.t. at most O(1) distinct
values of z. Then, by using a probabilistic argument,
one can show that, there exists a value of z such that
at most ϵ

ln d+1OPT(I) segments (of both kinds) from
a fixed optimal solution O are bad. We guess such a
value of z, which we now fix. Now, consider all squares
that intersect a line of Lz, called Ez. We consider all
such squares and all segments that can stab Ez, and use
an (ln d+ 1)-approximation to find a solution of size at
most ϵ ·OPT(I). Now, we decompose the instance into
vertical sub-instances.

Now we further divide each vertical sub-instance Ij
into smaller sub-instance using a modification to the
procedure described in Lemma 5. To this end, we fol-
low a similar procedure of considering segments by in-
creasing y-value (for horizontal segments, this will be
their y-value, for vertical segments, this will be the y-
value of their lower endpoint), but set the threshold of
size of approximate solution to be d2 log d/ϵ. It follows
that between two consecutive segments, at most d2/ϵ
new squares can be introduced. For each such square,
we add a segment that stabs it to our solution. Note
that due to the threshold, the number of segments thus
added is at most ϵ times the optimal solution for the
sub-instance below. This decomposes the vertical sub-
instance further into smaller sub-instances, where the
size of optimal solution is bounded by O(d2 log d/ϵ),
which can be solved by brute force. This strategy leads
to a PTAS with running time nO(d2 log d/ϵ).

4 A PTAS for Maximum Stabbing of Disjoint Unit
Squares

In this section, we present a PTAS for Maximum Stab-
bing of Disjoint Unit Squares. Our high-level

66 CCCG 2025, Toronto, Canada, August 13–15, 2025

strategy mirrors the earlier two-phase approach: we
partition the instance horizontally and vertically into
smaller sub-instances, allowing a small approximation
loss in the objective value. For the sake of analysis, we
fix an optimal solution Ok(I) ⊆ S of size k that stabs
a subset R∗ ⊆ R of size t.
For an instance I ′ = (R′,S ′) and an integer ℓ, let

OPTℓ(I ′) denote the maximum number of squares in R
that can be stabbed using any ℓ segments from S. In
particular, for the original instance I we set OPTk :=
OPTk(I) = |R∗| for notational convenience.

Step 1. Partitioning the instance into verti-
cal strips. We begin by defining a modified family of
vertical lines, similar to the construction in the previous
section. For 0 ≤ z < 2d

ϵ , let Lz denote the set of vertical

lines of the form x = z + i · 2d
ϵ for all integers i ∈ Z.

A unit square s is said to be h-bad with respect to z
if the maximum horizontal distance from any point in
s to the nearest line in Lz is at most d; otherwise, we
classify S as h-good with respect to z. Note that the
term h-bad refers to horizontal distance, although it is
measured from vertical lines—a distinction that should
not be confused. We now establish the following lemma,
which plays a role analogous to Lemma 3.

Lemma 6 There exists a value 0 ≤ z < 2d
ϵ such that

the number of squares in R∗ that are h-bad with respect
to z is at most ϵ · OPTk.

By enumerating all possible values of z, we fix one
that satisfies the guarantee of Lemma 6. This value
of z remains fixed for the remainder of the discussion.
Based on the vertical lines in Lz, we define vertical sub-
instances I1, I2, . . . , Ip, where each Ij = (Rj ,Sj) con-
sists of:

� Rj : the set of squares that are h-good with respect
to Lz and lie entirely within the region between the
j-th and (j + 1)-th vertical lines in Lz, and

� Sj : the set of segments that can stab at least one
square in Rj .

Step 2. Solving a sub-instance within a ver-
tical strip. Fix a vertical sub-instance Ij = (Rj ,Sj).
We further decompose this sub-instance using a second
application of the shifting technique—this time in the
vertical direction, and in a simpler form.
For 0 ≤ z′ < 1

ϵ , let L′
z′ denote the set of horizontal

lines defined by y = z′ + i · 1
ϵ , for all integers i ∈ Z. A

square S ∈ Rj is said to be v-bad with respect to z′ if
it intersects any line in L′

z′ , and v-good otherwise. In
general, we say that a square is good if it is both h-good
as well as v-good, and bad otherwise. We now state
the following lemma, which is analogous to Lemma 6.
The proof follows directly from the same probabilistic
argument and hence is omitted.

ℓ1 ℓ2 ℓ3

h1

h2

h3

d 2d

2d/ϵ

1/ϵ

I1,1

I1,2

I1,3

I2,1

I2,2

I2,3

Figure 2: Squares colored red are bad squares, dot-
ted segments shows optimal solution. Notice that our
algorithm will not consider bad squares (Optimum in-
cluded).

Lemma 7 There exists some 0 ≤ z′ < 1
ϵ such that at

most ϵ · OPTk squares in R∗ are v-bad w.r.t. z′.

We fix such a value of z′ and decompose each vertical
sub-instance Ii into smaller sub-instances Ii,1, . . . , Ii,q.
Each Ii,j = (Ri,j ,Si,j) is defined as follows.

� Ri,j consists of only good squares from Ri that
are fully contained within the region bounded by
vertical lines i, i+ 1 and horizontal lines j, j + 1,

� Si,j is the set of segments from Si that stab at least
one square in Ri,j .

Note that each sub-instance Ii,j is fully contained within
a rectangle of dimensions 1

ϵ ×
2d
ϵ .

Lemma 8 For each i ≥ 1 and j ≥ 1, let Ii,j =
(Ri,j ,Si,j) denote the j-th rectangular sub-instance of
the i-th vertical sub-instance. Define ki,j := |Si,j ∩
Ok(I)| and ti,j := |Ri,j ∩R∗|. Then:∑

i,j

OPTki,j
(Ii,j) ≥ (1− 2ϵ) ·OPTk(I).

Step 3: Solving Bounded Sub-Instances via
Preprocessing

Each sub-instance Ii,j = (Ri,j ,Si,j) lies within a rect-
angle of area at most 2d

ϵ2 . Since the squares are unit-
sized and disjoint, the number of squares in any sub-
instance is bounded by λ := 2d

ϵ2 . We similarly restrict at-
tention to the subset of segments Si,j ⊆ S that intersect
the same region. We exhaustively enumerate all subsets
of segments from Si,j of size at most λ and, for each,
compute how many squares inRi,j it can stab. Based on

37th Canadian Conference on Computational Geometry, 2025 67

this, we construct a feasibility table: T [i, j, s, ℓ] = true

iff there exists a subset of Si,j of size at most ℓ that
stabs at least s squares in Ri,j .

� Initialization: T [i, j, 0, ℓ] := true for 0 ≤ ℓ ≤ λ

� Monotonicity Rule: If T [i, j, s, ℓ] = true, then
also set T [i, j, s′, ℓ] := true for all s′ ≤ s.

This preprocessing requires time mO(λ) per sub-
instance and produces a compact DP table indexed by
(s, ℓ) pairs.

Step 4: Combining Sub-Instance Solutions un-
der Global Budget

Let M denote the total number of sub-instances Ii,j .
To compute a global solution using at most k segments
overall, we apply a dynamic programming routine across
sub-instances.

Define a DP table: Let DP [m, b] denote the maxi-
mum number of squares that can be stabbed using at
most b segments across the first m sub-instances, here
the sub-instances Ii,j are ordered arbitrarily. In the
following, we slightly abuse the notation and in the ta-
ble T , use m as a short-hand for i, j, where mth sub-
instance is Ii,j .

� Initialization: DP [0, b] := 0 for all b ∈ [0, k]

� Transition: For each sub-instance m ∈ [1,M] and
each budget b ∈ [0, k],

DP [m, b] = max
0≤ℓ≤b

(
DP [m− 1, b− ℓ]

+ max {s | T [m, s, ℓ] = true}
)

� Final Result: max0≤b≤k DP [M, b] gives the best
total coverage using ≤ k segments.

The above routine runs in O(M ·k ·λ) time, assuming
constant-time access to the precomputed T -table per
sub-instance. Note that M,k, and λ are polynomial (in
fact, linear) in m and n, which implies that the running

time of the algorithm is dominated by the nO(d/ϵ2) time
required to fill the T [·] table in each bounded-size sub-
instance. This completes the proof of Theorem 2.

Handling vertical and horizontal segments. The
modifications required to handle vertical segments are
straightforward. In the first step, we remove all verti-
cal segments that lie within a distance d from a line of
Lz. The rest of this step remains unaffected. In the
second step, the vertical distance between lines of L′

z′

is again chosen to be 2d
ϵ , and we perform a similar anal-

ysis for the vertical segments, using a horizontal strip
of height d around each line of L′

z′ . Using similar argu-
ments, it can be shown that at least (1−Ω(ϵ))-fraction

of squares stabbed by an optimal solution remain unaf-
fected for some choice of z, z′. Then, a similar enumer-
ation and dynamic programming can be used to find a
near-optimal solution. Note that the running time of
the PTAS now becomes nO(d2/ϵ2) since each bounded
sub-instance has size 2d

ϵ × 2d
ϵ .

5 APX-Hardness for Unbounded Segments

We note that a result of Kowalska and Pilipczuk [14],
that shows APX-hardness for the problem of finding
the minimum number of horizontal/vertical segments to
cover all the given points in R2. It is not too difficult to
see that, by scaling the instance appropriately, one can
ensure that the minimum distance between two points,
as well as that between two non-intersecting segments
is at least a constant, say 5. Then, we replace each
point p in the scaled instance by a unit square Sp cen-
tered at p; and if any segment s has p as its endpoint,
then we slightly extend s so that it completely stabs
Sp. It is straightforward to see the bijection between
the set of feasible solutions for the original instance of
Segment Set Cover, and the new instance of Stabbing
Unit Squares, establishing the APX-hardness of the lat-
ter problem. Note that due to our initial scaling, the
length of the segments is not necessarily bounded.

6 Conclusion

In this work, we consider a restricted variant of rectan-
gle stabbing problem, where the rectangles are disjoint
unit squares, and the horizontal segments have bounded
length. We give PTASes for the Set Cover as well as
Maximum Coverage variants of the problem. It is
not too difficult to see that the “disjoint square” re-
quirement can be relaxed to consider rectangles whose
length and breadth are Θ(1). Even in this setting, our
techniques will yield PTASes for the two variants with
the same running time, up to the constants hidden in
the big-Oh notation in the exponent.

We also sketch the modifications needed to adapt
our PTASes for handling axis-parallel segments of both
kinds, under the assumption that the segments have
bounded length. In contrast, we observe that a known
result in the literature implies APX-hardness for the
problem without an upper bound on the lengths of the
segments.

References

[1] H. Brönnimann and M. T. Goodrich. Almost op-
timal set covers in finite vc-dimension. Discrete &
Computational Geometry, 14(4):463–479, 1995.

[2] T. M. Chan, E. Grant, J. Könemann, and
M. Sharpe. Weighted capacitated, priority, and ge-

68 CCCG 2025, Toronto, Canada, August 13–15, 2025

ometric set cover via improved quasi-uniform sam-
pling. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, Kyoto, Japan, January 17-19, 2012,
pages 1576–1585, 2012.

[3] T. M. Chan, T. C. van Dijk, K. Fleszar, J. Spo-
erhase, and A. Wolff. Stabbing Rectangles by
Line Segments - How Decomposition Reduces the
Shallow-Cell Complexity. In W.-L. Hsu, D.-T. Lee,
and C.-S. Liao, editors, 29th International Sym-
posium on Algorithms and Computation (ISAAC
2018), volume 123 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 61:1–61:13,
Dagstuhl, Germany, 2018. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[4] K. L. Clarkson and K. Varadarajan. Im-
proved approximation algorithms for geometric set
cover. Discrete & Computational Geometry,
37(1):43–58, 2007.

[5] I. Dinur and D. Steurer. Analytical approach to
parallel repetition. In D. B. Shmoys, editor, Sym-
posium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages
624–633. ACM, 2014.

[6] F. Eisenbrand, M. Gallato, O. Svensson, and
M. Venzin. A QPTAS for stabbing rectangles.
CoRR, abs/2107.06571, 2021.

[7] T. Erlebach and E. J. Van Leeuwen. Ptas for
weighted set cover on unit squares. In Pro-
ceedings of the 13th International Conference on
Approximation, and 14 the International Con-
ference on Randomization, and Combinatorial
Optimization: Algorithms and Techniques, AP-
PROX/RANDOM’10, pages 166–177, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[8] R. Gandhi, S. Khuller, and A. Srinivasan. Approx-
imation algorithms for partial covering problems.
J. Algorithms, 53(1):55–84, 2004.

[9] D. R. Gaur, T. Ibaraki, and R. Krishnamurti. Con-
stant ratio approximation algorithms for the rect-
angle stabbing problem and the rectilinear parti-
tioning problem. Journal of Algorithms, 43(1):138–
152, 2002.

[10] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in im-
age processing and vlsi. J. ACM, 32(1):130–136,
Jan. 1985.

[11] S. Jana and S. Pandit. Covering and packing of rec-
tilinear subdivision. Theor. Comput. Sci., 840:166–
176, 2020.

[12] R. M. Karp. Reducibility among combinatorial
problems. In R. E. Miller and J. W. Thatcher,
editors, Proceedings of a symposium on the Com-
plexity of Computer Computations, held March 20-
22, 1972, at the IBM Thomas J. Watson Re-
search Center, Yorktown Heights, New York, USA,
The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972.

[13] A. Khan, A. Subramanian, and A. Wiese. A
PTAS for the horizontal rectangle stabbing prob-
lem. Math. Program., 206(1):607–630, 2024.

[14] K. Kowalska and M. Pilipczuk. Parameterized and
Approximation Algorithms for Coverings Points
with Segments in the Plane. In O. Beyersdorff,
M. M. Kanté, O. Kupferman, and D. Loksh-
tanov, editors, 41st International Symposium on
Theoretical Aspects of Computer Science (STACS
2024), volume 289 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 47:1–47:16,
Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[15] N. H. Mustafa and S. Ray. Improved results on
geometric hitting set problems. Discrete & Com-
putational Geometry, 44(4):883–895, 2010.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher.
An analysis of approximations for maximizing
submodular set functions - I. Math. Program.,
14(1):265–294, 1978.

[17] K. R. Varadarajan. Epsilon nets and union com-
plexity. In Proceedings of the 25th ACM Sympo-
sium on Computational Geometry, Aarhus, Den-
mark, June 8-10, 2009, pages 11–16, 2009.

[18] K. R. Varadarajan. Weighted geometric set cover
via quasi-uniform sampling. In Proceedings of the
42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pages 641–648, 2010.

37th Canadian Conference on Computational Geometry, 2025 69

A Missing Proofs

In this section, we provide the proofs omitted from the
main paper due to space constraints. For convenience,
we restate the respective lemmas.

A.1 Proofs from Section 3

Lemma 3 [Good-z Value] There exists a value 0 ≤
z < d

ϵ , satisfying that the number of squares of O that
intersect any line of Lz is at most ϵ ·OPT(I). Further-
more, for such a z, we can find in polynomial time a
subset SE of line segments from S that stabs all square
in Ez, such that the total number of segments in SE is
at most ϵ ·OPT(I).

Proof. Suppose we select z uniformly at random from
[0, d/ϵ). Now we define a random variable for each seg-
ment si ∈ O:

Xsi =

{
1 if si crosses a line of Lz,

0 otherwise.

Note that the probability that a vertical line from Lz

intersects a fixed segment s is the ratio of the segment’s
length to the spacing between vertical lines. Since each
segment has length at most d, this probability is at most
d

d/ϵ = ϵ. Thus, for each si ∈ O, we have that, E[Xsi] =

Pr[Xsi = 1] ≤ ϵ.
Let X =

∑
si∈O Xsi . By linearity of expectation, we

obtain:

E[X] =
∑
si∈O

E[Xsi] ≤ ϵ ·OPT(I).

This shows the existence of a required z ∈ [0, d
ϵ). Now,

observe that square in Ez can only be stabbed by a seg-
ment that also crosses a line Lz, and further no segment
can stab two distinct squares in Ez. Since this property
is also satisfied by O, it follows that |Ez| is bounded
by ϵ · OPT(I). Such distinct segments can be found
by arbitrarily picking one segment for each square in
Ez. □

Lemma 4 [Crossing Segments] The total op-
timal cost across all vertical sub-instances satisfies:∑q

j=1 OPT(Ij) ≤ (1 + c′ϵ) ·OPT(I), for some constant
c′ > 0.

Proof. For each sub-instance Ij , we define a corre-
sponding feasible solution Oj ⊆ O as follows. Oj con-
sists of those segments in O that either lie entirely
within the vertical strip defining Ij , or intersect one
of the vertical boundaries of the strip and stab at least
one square in Rj . By construction, these segments stab

all the squares in Rj , and hence Oj is a feasible solution
for Ij . Therefore,

OPT(Ij) ≤ |Oj |.

We now decompose the original optimal solution O
into two disjoint subsets:

� Oin: segments that lie entirely within a single ver-
tical strip,

� Ocross: segments that intersect a vertical line sepa-
rating adjacent strips.

Clearly, O = Oin⊎Ocross, and each segment in Ocross

may appear in at most two sub-instance solutions.
Thus, the total number of segments used across all

Oj satisfies:

q∑
j=1

|Oj | ≤ |Oin|+ 2|Ocross| ≤ |O|+ 2|Ocross|.

Following a similar argument as in the z-value lemma
(Lemma 3), we can bound the number of crossing seg-
ments by |Ocross| ≤ cϵ·OPT(I), for some constant c > 0.
While the exact lemma concerns expected values over
a random choice of z, the underlying analysis applies
here to control the total number of cross-strip segments
in the fixed partition. Therefore,

q∑
j=1

OPT(Ij) ≤
q∑

j=1

|Oj | ≤ (1 + 2cϵ) ·OPT(I),

which proves the lemma by setting c′ = 2c. □

Theorem 1 For any ϵ > 0, there exists an algorithm
that takes an instance of Stabbing Disjoint Unit
Squares, runs in time mO(d log d/ϵ2) ·nO(1) and returns
a (1 + ϵ)-approximation.

Proof. As established in Lemma 5, each sub-instance
created via partitioning contains at most O(d log d/ϵ2)
squares. For each such sub-instance Ij,i, we exhaus-
tively enumerate all subsets of segments of size at most
O(d log d/ϵ2) and select the smallest feasible one that
stabs all the contained squares. The number of such
subsets is (

m

O(d log d/ϵ2)

)
= mO(d log d/ϵ2).

Thus, solving a single sub-instance Ij,i takes time

mO(d log d/ϵ2). Each vertical strip induces t ≤ n such
sub-instances.

Other components of the algorithm contribute only
polynomial overhead:

70 CCCG 2025, Toronto, Canada, August 13–15, 2025

� The set Sh, computed by horizontal sweeping, has
size at most ϵ ·OPT(Ij) and is obtained in polyno-
mial time.

� The set Ez, determined by the lines of Lz, also
has size at most ϵ · OPT(I) and is computable in
polynomial time.

Lets focus on solution by each Ij , it has subinstances
which consists of optimally solved Ii,j and Sh bounded
by ϵ · OPT(Ij). Hence it has bound (1 + ϵ) · OPT(Ij).
Lemma 4 implies that combining the solutions for ver-
tical sub-instances and Ez will give a solution of total
size at most (1 + ϵ) · (1 + c′ϵ) ·OPT(I) + ϵ ·OPT(I) =
(1 +O(ϵ)) ·OPT(I). This completes the proof. □

A.2 Proofs from Section 4

Lemma 6 There exists a value 0 ≤ z < 2d
ϵ such that

the number of squares in R∗ that are h-bad with respect
to z is at most ϵ · OPTk.

Proof. For a randomly chosen z ∈ [0, 2d
ϵ), the proba-

bility that a given square in R∗ is h-bad is at most

Pr[a square is h-bad] ≤ 2d

2d/ϵ
= ϵ.

Taking expectation over all |R∗| = OPTk squares, we
have

E[# h-bad squares in R∗] ≤ ϵ · OPTk.

Hence, there must exist some z ∈ [0, 2d
ϵ) for which the

number of h-bad squares is at most ϵ · OPTk, as de-
sired. □

Lemma 8 For each i ≥ 1 and j ≥ 1, let Ii,j =
(Ri,j ,Si,j) denote the j-th rectangular sub-instance of
the i-th vertical sub-instance. Define ki,j := |Si,j ∩
Ok(I)| and ti,j := |Ri,j ∩R∗|. Then:∑

i,j

OPTki,j (Ii,j) ≥ (1− 2ϵ) ·OPTk(I).

Proof. Consider sub-instance Ii,j . The subset Si,j ∩
Ok(I) contains ki,j segments that can stab ti,j squares
in Ri,j ∩R∗. This implies:

OPTki,j
(Ii,j) ≥ ti,j .

By Lemmas 10 and 11, at most ϵ · OPTk(I) squares
from R∗ are h-bad and at most ϵ ·OPTk(I) are v-bad.
Thus, at least (1 − 2ϵ) · OPTk(I) squares from R∗ are
good and retained in the modified instance.

Because the sub-instances are disjoint, we have:∑
i,j

ti,j ≥ (1− 2ϵ) ·OPTk.

Combining with the inequality OPTki,j (Ii,j) ≥ ti,j , the
lemma follows. □

	Introduction
	Preliminaries
	A PTAS for Stabbing Disjoint Unit Squares
	Algorithm Overview

	A PTAS for Maximum Stabbing of Disjoint Unit Squares
	APX-Hardness for Unbounded Segments
	Conclusion
	Missing Proofs
	Proofs from Section 3
	Proofs from Section 4

