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Quasigeodesics on the Cube
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Abstract

A quasigeodesic is a curve on the surface of a convex
polyhedron that has ≤ π surface angle to each side at
every point. In contrast, a geodesic has exactly π angle
to each side and so can never pass through a vertex,
whereas quasigeodesics can. Although it is known that
every convex polyhedron has at least three simple closed
quasigeodesics, little else is known. Only tetrahedra
have been thoroughly studied.

In this paper we explore the quasigeodesics on a
cube, which have not been previously enumerated.
We prove that the cube has exactly 15 simple closed
quasigeodesics (beyond the three known simple closed
geodesics). For the lower bound we detail 15 simple
closed quasigeodesics. Our main contribution is estab-
lishing a matching upper bound. For general convex
polyhedra, there is no known upper bound.

1 Introduction

1.1 Quasigeodesics: Examples and Intuition

A quasigeodesic is a curve on the surface of a con-
vex polyhedron that has ≤ π surface angle to each side
at every point. In contrast, a geodesic has exactly π
angle to each side. Because a vertex is a point with
less than 2π surface, a geodesic can never pass through
a vertex. Quasigeodesics can pass through vertices; a
quasigeodesic could be unrolled to a straight line on a
plane, as we will explain shortly.

To describe geodesics and quasigeodesics explicitly,
we adopt the notation for faces and vertices displayed

∗Artificial first author to highlight that the other authors (in
alphabetical order) worked as an equal group.

†U. Mass. Lowell, hugo akitaya@uml.edu
‡MIT, edemaine@mit.edu
§Harvard U., ahesterberg@seas.harvard.edu
¶thomas.hull@fandm.edu
∥U. Waterloo, alubiw@uwaterloo.ca

∗∗MIT, jaysonl@mit.edu
††EPFL, klara.mundilova@epfl.ch
‡‡cnara@jeans.ocn.ne.jp
§§Smith College, jorourke@smith.edu
¶¶U. Mass. Lowell, frederick stock@student.uml.edu
∥∥josef.tkadlec@iuuk.mff.cuni.cz

∗ ∗ ∗uehara@jaist.ac.jp

in Fig. 1(a). Note that we label vertices in figures by
their index i, but refer to them in the text as vi.

Examples of quasigeodesics are shown in Fig. 1(b).
Let αi be the surface angle to the left of a quasigeodesic
q passing through vi, and βi the angle to the right. The
curvature at vi is 2π − (αi + βi), i.e., it is the angle
gap with respect to 2π. Each vertex of the cube has
curvature π/2.

R

T

L

B

K

1

2

3

4

5

6

7 7

8

1

3
6

8

F

(a) (b)

Figure 1: (a) F,R,T,K,L,B = Front, Right, Top, bacK,
Left, Bottom. B vertices indexed 1, 2, 3, 4; T vertices
indexed 5, 6, 7, 8. (b) All the paths counterclockwise
between v1v6v3 to v1v6v8 are quasigeodesics. For ex-
ample, v1v6v3 (red/blue) has α6 = π/2 to the left and
β6 = π to the right.

The Gauss-Bonnet theorem implies that the total cur-
vature (the sum of all vertex curvatures) is 4π. A sim-
ple closed geodesic partitions this curvature exactly into
2π : 2π, as one can verify in Fig. 2. But most convex
polyhedra have no such geodesic [9]. Nevertheless, there
is a sense in which a simple closed quasigeodesic also
partitions the curvature into equal halves. Let a quasi-
geodesic q have angles α and β to the left and right of
a vertex v. Then one can consider q distributing π − α
of its curvature to the left of q and π − β curvature to
the right. Then a simple closed quasigeodesic partitions
this curvature into 2π : 2π.

For example, consider the path bounding face T:
v5, v6, v7, v8. This is a simple closed quasigeodesic Q,
with α = π/2 and β = π at each of the four vertices.
So, under the curvature distribution viewpoint, Q con-
tributes 4·π/2 to the left and none to the right, verifying
the 2π : 2π partition.
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It is then possible to view a simple closed quasi-
geodesic Q as partitioning convex polyhedron P into
two half-surfaces, each containing (after distribution)
2π of curvature. This partition is used in [10] to define
a transformation achieved by twisting one half-surface
with respect to the other, and used in [14] to find a
nonoverlapping unfolding of P (among other results).

Returning to the rolling remark, because both αi ≤ π
and βi ≤ π at vertex vi, it is possible to roll a polyhedron
on a plane along a quasigeodesic straight through vi by
imagining “filling out” αi and βi to π each.

1.2 Historical Remarks

Ever since Poincaré’s investigations more than a century
ago, closed geodesics have played an important role in
the topology of Riemannian manifolds [2, p. 433]. It is a
famous 1929 theorem of Lyusternik-Schnirelmann that
every smooth genus-0 surface has at least three simple
(non-self-intersecting) closed geodesics [11]. Pogorelov
proved in 1949 a natural analog: Every convex sur-
face has at least three simple closed quasigeodesics [15].
Pogorelov’s existence proof does not suggest a way to
identify the three quasigeodesics, and it is only recently
that finite algorithms have been proposed [5] [3].

Aside from these algorithms, simple closed quasi-
geodesics have only been systematically studied on
tetrahedra [13], and, postdating this CCCG paper, on
the regular icosahedron [12]. Two results in [13] are:
(1) There is an open set in the space of all tetrahe-
dra, each element of which has at least 34 simple closed
quasigeodesics. (2) On any tetrahedron whose faces are
not all congruent, there is at least one 1-vertex, one 2-
vertex, and one 3-vertex simple closed quasigeodesic. In
contrast to (2), it is known from [4] that the cube does
not have a 1-vertex simple closed quasigeodesic, and
from [7] that the regular icosahedron does not either.

Simple closed quasigeodesics play central roles in [10]
and [14], and are of interest in their own right. But be-
yond their existence, much remains unknown. There is
no known upper bound on the number of simple closed
quasigeodesics on a given polyhedron, and there is an
n-vertex polyhedron with 2Ω(n) distinct simple closed
quasigeodesics [6, Sec. 24.4]. In contrast, it is known
that isosceles tetrahedra1 have arbitrarily long “spiral-
ing” simple closed geodesics [16] [1].

1.3 Our Contribution

In this paper we make a complete inventory of simple
closed quasigeodesics on a cube. It was known that
there are precisely three simple closed geodesics on the
cube. We identify a further 15 simple closed quasi-
geodesics (up to symmetries), and prove that this list

1Also called disphenoids, tetramonohedra, isotetrahedra, and
several other names. All faces are congruent acute triangles.

is complete. We consider this proof to be our most sig-
nificant contribution.

1.4 Three simple closed geodesics

It has long been known that there are precisely three
simple closed geodesics on the cube [8], displayed in
Fig. 2.2 Note that each of the three geodesics can slide

Figure 2: The three simple closed geodesics on a cube.
The first is an equatorial band. The other two are as
depicted.

within a range, maintaining parallelism. This is because
each geodesic lies on a cylinder, with 2π curvature (four
vertices, each with π/2 curvature) to each side.

2 Outline of Argument

We mentioned that simple closed geodesics can spiral
around isosceles tetrahedra. A simple closed quasi-
geodesic also may spiral around other convex polyhedra,
as shown in Fig. 3. A central aspect of our proof is to
show that quasigeodesics cannot spiral on a cube.

Define a geodesic segment as a non-self-intersecting
vertex-to-vertex geodesic (a geodesic whose enpoints are
vertices).3 A simple closed quasigeodesic is composed
of a sequence of geodesic segments, satisfying the ≤ π
condition to both sides at each vertex.

An instructive example was identified in [5]: a long
box with a spiraling simple closed quasigeodesic. See

2Note these three are not the three from Pogorelov’s theorem.
3In some literature, a geodesic segment is a shortest path be-

tween its endpoints. In this paper, our geodesic segments may or
may not be shortest.
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Ai: 4 quasigeos using only 0/1 segments.
Bi: 5 quasigeos using at least one 1/1 segment.
Ci: 4 quasigeos using at least one 1/2 segment.
D1: 1 quasigeo using a single 1/3 segment.
E1: 1 quasigeo using a single 2/3 segment.

Table 1: Description of the five categories of quasigeos.

Fig. 3. Each of the four marked vertices has π angle
to one side and π/2 to the other side. Since there is
freedom to partition the 3π/2 surface angle differently
(while maintaining ≤ π to each side), the number of spi-
raling simple closed quasigeodesics of a long box grows
with the length of the long side of the box. A crucial
property of spiraling is that some geodesic segment re-
enters its initial face. For example, the blue geodesic
segment from v1 to v2 in the figure starts on the long
front-side face and later re-enters that face. We will
prove that this cannot happen on a cube: a geodesic
segment cannot return to its initial face, and in fact,
cannot cross any face more than once.

v4

v3

v2

v1

Figure 3: (v1, v2, v3, v4, v1) is a simple closed quasi-
geodesic. Based on Fig. 2 in [5].

3 Fifteen Simple Closed Quasigeodesics

Here is our main result:

Theorem 1 There are exactly 15 simple closed quasi-
geodesics on the cube (beyond the three simple closed
geodesics noted above). These are displayed in Fig. 4
and described in Table 1.

As our sole focus in the remainder is on “simple closed
quasigeodesics,” we often simplify that term to quasi-
geos.

The quasigeos are listed in order of the length of the
geodesic segments comprising them, as described in Ta-
ble 1. We identify a geodesic segment by its slope y/x,
i.e., vertically up y units and rightward horizontally x
units within the natural coordinate system of its start-
ing face.

A1 A2 A3 A4

B1 B2 B3 B4 B5

C1 C2 C3 C4

D1 E1

Figure 4: The 15 simple closed quasigeodesics.

4 Five Slopes

Our approach is to analyze a geodesic segment based
on the angle α it makes in its starting face. Consider
a geodesic segment that does not follow an edge of the
cube. Then it enters the interior of a face and makes
an angle in the range (0, π/4] with one edge of the face.
We express this as a slope in the range (0, 1]. We first
rule out some slopes in this range because the geodesic
segment revisits the first face and intersects itself there.
We rule out further slopes by finding intersections be-
tween two geodesic segments. This reduces the possible
slopes to a finite set, which allows a combinatorial enu-
meration of all simple closed quasigeodesics.

0/1

1/1

2/3

1/31/2

Figure 5: The five possible distinct slopes.

Lemma 2 A geodesic segment that is a component
of a simple closed quasigeodesic on the cube can
only have one of the five slopes shown in Fig. 5:
0/1, 1/3, 1/2, 2/3, 1/1.

Corollary 3 A geodesic segment that is a component
of a simple closed quasigeodesic on the cube does not
cross any face more than once.

We prove the lemma by partitioning the rest of the
slope range (0, 1] into the following seven ranges:
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� Case 1. (0/1, 1/4]

� Case 2. (1/4, 1/3)

� Case 3. (1/3, 2/5)

� Case 4. [2/5, 1/2)

� Case 5. (1/2, 2/3)

� Case 6. (2/3, 3/4)

� Case 7. [3/4, 1/1)

Fig. 6 shows the seven cases, and Fig. 7 shows how
each range progresses on the unfolded surface of the
cube. Each case has a (pink) F-cone with angle θ at
v1. From Fig. 7 we immediately obtain:

Claim 1 No geodesic segment is possible in Cases 2, 3,
and 6 because the segment revisits the starting face and
intersects itself there. (We note that the crossing is at
right angles, a known constraint [8].)

The remaining four cases are possible for a single
geodesic segment, but not for a geodesic segment that
is part of a quasigeo.

Claim 2 Consider a geodesic segment g that is a com-
ponent of a simple closed quasigeodesic on the cube, and
that falls into Case 1, 4, 5, or 7. Then g intersects an-
other segment of the quasigeodesic.

Proof. We find an intersection point by following the
quasigeo backwards from v1, the starting vertex of g.
Let g′ be the geodesic segment before g. We trace g′

backwards from its terminus at v1.

0/1

1/4

1/3

2/5
1/2

2/3

3/4

1/1

v1

Case 1: (0/1,1/4]
Case 2: (1/4,1/3)
Case 3: (1/3,2/5)
Case 4: [2/5,1/2)
Case 5: (1/2,2/3)
Case 6: (2/3,3/4)
Case 7: [3/4,1/1)

Figure 6: The seven slope ranges. Cases 2, 3, and 6 (in
blue) are ruled out in Claim 1, and Cases 1, 4, 5, and 7
(in pink) are ruled out in Claim 2, leaving only the five
slopes (in purple) allowed in Lemma 2.
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Figure 7: The seven slope cases, showing the range of
slopes (in pink) progressing across the faces of the cube.
The geodesic segment starts in face F1 and revisits the
starting face, marked F2 (in white).
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Figure 8: The Case 1 F-cone in 3D. θ = arctan(1/4).
Cf. Fig. 9.

Case 1. We focus on Case 1 in Fig. 9. The 2D un-
folding of that case is shown on the 3D cube in Fig. 8.
Cases 4, 5 and 7 will follow the same general scheme as
Case 1.

View g as directed crossing faces F1, R, K, L in order.
In Case 1, g has slope in (0/1, 1/4] and lies within the
pink F-cone of angle θ as illustrated. We now show
that g cannot be part of a simple closed quasigeodesic,
by analyzing the possibilities for the previous geodesic
segment g′, i.e., the geodesic segment that closes the
quasigeo as it revisits v1.

Because the angle between g and g′ at v1 must be
≤ π, g′ must leave v1 (“backwards”) in a θ + π/2 cone
that extends counterclockwise π/2 from edge v1v5, and
a further θ from edge v1v4. This cone is open along edge
v1v5 and closed on its other boundary. We partition the
cone into three possibilities:
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(1) g′ lies strictly within the quarter-circle on face L at
v1 (counterclockwise between edges v1v5 and v1v4).
Then g′ crosses g no matter where g and g′ lie in
their respective cones.

(2) g′ lies in the cone of angle θ counterclockwise of
edge v1v4. This cone (colored blue in Fig. 8) is
open along the edge v1v4 and closed on its other
boundary. Then g′ wraps clockwise around v4 by
π/2, and crosses g in face K.

(3) g′ follows the edge v1v4. Then g′ hits vertex v4 and
ends there. Let g′′ be the next geodesic segment.
Then g′′ leaves v4 in face K in the closed quarter-
circle bounded by edges v4v8 and v4v3. Any g′′

in this cone intersects g unless g′′ follows the edge
v4v3. Repeating this argument, we either find an
intersection with g, or we eventually follow the edge
v2v1—but then the angle with g at v1 is too sharp
for a quasigeodesic.

So we obtain a quasigeo violation for every g inside or
on the upper boundary of the F-cone in Case 1.

The argument for the remaining cases proceeds simi-
larly, presented below somewhat more concisely.
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Figure 9: The geodesic segment g in the F-cone is
crossed by g′, either if starting backwards in the quarter-
circle, or starting as much as θ beyond (blue angle and
segment.), where θ is the F-cone angle at v1.

The argument for the remaining cases proceeds simi-
larly, presented below somewhat more concisely. In the
three remaining cases, we likewise consider F-cones with
angle θ at v1 in F1 and preceding geodesics g′ that leave
v1 in a θ + π/2 cone in F2.

Case 4. There are three options for g′:

(1) g′ lies strictly within the quarter-circle on faces B
and L. Then g′ crosses g no matter where they lie
in their cones.

(2) g′ lies in the cone of angle θ strictly clockwise of
the upper boundary of the F-cone. Then g′ wraps
counterclockwise about v7 and crosses g in face R.

(3) g′ follows the upper F-cone edge (slope 1/2). Then
g′ hits v7. As in Case 1, repeating the argument,
the next geodesic segment g′′ leaves the quarter-
circle similarly anchored on v7 and either crosses g
in the F-cone, or hits v1 at an angle too sharp for
a quasigeodesic.

Case 5.

(1) g′ lies strictly within the quarter-circle on faces B
and L. Then g′ crosses g no matter where they lie
in their cones.

(2) g′ lies in the cone of angle θ strictly counterclock-
wise of the lower boundary of the F-cone. Then g′

wraps clockwise about v7 and crosses g in face R
or T.

(3) g′ follows the lower F-cone edge (slope 1/2). Then
g′ hits v7. Repeating the arguments of the previ-
ous cases, the next geodesic segment g′′ leaves the
quarter-circle anchored on v7 and either crosses g
in the F-cone, or hits v1 at an angle too sharp for
a quasigeodesic.

Case 7.

(1) g′ lies strictly within the quarter-circle on faces B
and L. Then g′ crosses g no matter where they lie
in their cones.

(2) g′ lies in the cone of angle θ strictly clockwise of
the upper boundary of the F-cone. Then g′ wraps
counterclockwise about v8 and crosses g in face L
or K.

(3) g′ follows the upper F-cone edge (slope 1/1). Then
g′ hits v8. We repeat the previous arguments. The
next geodesic segment g′′ leaves the quarter-circle
anchored on v8 and either crosses g in the F-cone,
or hits v6. Applying the argument again, the next
geodesic segment g′′′ either crosses g or or hits v1
at an angle too sharp for a quasigeodesic.

This completes the proof of Claim 2. □

Claims 1 and 2 establish that, of the seven cases fill-
ing the entire range of slopes (Fig. 6), all but the five
identified slopes are impossible, and so prove Lemma 2
and Corollary 3.
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5 Search for Quasigeos

We initially found the 15 quasigeos in Fig. 4 “by hand.”
To establish that there are no other possibilities, we
programmed an exhaustive search based on Lemma 2.
We chose to use a DFS search, starting with the longest
geodesic segments first, because they maximize pruning.
Ordered by lengths, the slopes are 2/3 > 1/3 > 1/2 >
1/1 > 0/1:

√
13,

√
10,

√
5,
√
2, 1. With this ordering,

the first quasigeo found by the DFS was E1 in Fig. 4,
employing one geodesic segment of slope 2/3 and one
cube edge. And the last quasigeo found was A3, com-
posed of six cube edges.

We implemented the DFS to first eliminate a possible
next geodesic segment based on the lengths ordering
(which resulted in 1070 eliminations), then on illegal
turn angle (225 eliminations out of 582 checks), and
finally crossing geodesic segments (174 eliminations out
of 353 checks). Examples of pruning geodesic segments
based on crossing are shown in Fig. 10.

The DFS found 29 quasigeos, and after eliminating
the duplicates congruent by a symmetry, exactly the 15
in Fig. 4 remain.4

Recall Corollary 3 established that no single geodesic
segment part of a cube quasigeo can cross a face more
than once. This contrasts with the long box example,
Fig. 3. A consequence of the inventory of the 15 quasi-
geos is that no cube quasigeo can cross a face more than
once.

Figure 10: Red: Partial quasigeo, through vertices
listed. Blue: All possible extension geodesic segments
that pass the lengths ordering and the angle-turn elim-
inations, leaving only self-crossing to check.

6 Discussion and Open Problems

We have proved Theorem 1 by verifying that the list in
Fig. 4 is exhaustive. Below we list several open ques-
tions.

(1) It would be useful to avoid the exhaustive search
with a geometric proof that could be applied to
convex polyhedra beyond the cube.

4We have not made our code available, but it is an easy pro-
gramming exercise to verify our exhaustive search.

(2) Is there a finite upper bound to the number of sim-
ple closed quasigeodesics (that are not geodesics)
on a given nondegenerate polyhedron of n ver-
tices? There is no such bound for simple closed
geodesics. Nor is there a bound for (degenerate)
doubly-covered squares: see Fig. 11.

(a) (b)

Figure 11: Doubly-covered square. Red segments:
front. Blue segments: back. (a) Simple closed geodesic.
(b) Simple closed quasigeodesic.

(3) It was proved in [13] that every tetrahedron has a
simple closed geodesic or a 1-vertex simple closed
quasigeodesic. That the same holds for any convex
polyhedron was conjectured in [14]. As mentioned,
it is known from [4] that the cube does not have
a 1-vertex simple closed quasigeodesic, but it does
have simple closed geodesics, so the cube accords
with the conjecture. Settling the conjecture either
way seems currently out of reach.

(4) Matters become more complicated for non-cubical
boxes. Fig. 12(a) shows a twisted quasigeo on a
1 × 1 × 3 box. The slightly non-cubical box in
(b) of the figure has a “diamond” 1-vertex sim-
ple closed quasigeodesic. Characterizing all sim-

(a) (b)

Figure 12: (a) A twisted quasigeo on a 1 × 1 × 3 box.
(b) A 1-vertex quasigeo on a 1× 1× 1 1

4 box.

ple closed quasigeodesics on boxes is a natural next
step.
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