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Decremental Greedy Polygons and Polyhedra Without Sharp Angles

David Eppstein*

Abstract

We show that the max-min-angle polygon in a planar
point set can be found in time O(nlogn) and a max-min-
solid-angle convex polyhedron in a three-dimensional
point set can be found in time O(n?). We also study the
maxmin-angle polygonal curve in 3d, which we show to
be NP-hard to find if repetitions are forbidden but can
be found in near-cubic time if repeated vertices or line
segments are allowed, by reducing the problem to find-
ing a bottleneck cycle in a graph. We formalize a class
of problems on which a decremental greedy algorithm
can be guaranteed to find an optimal solution, generaliz-
ing our max-min-angle and bottleneck cycle algorithms,
together with a known algorithm for graph degeneracy.

1 Introduction

In this work, we study the natural problem of finding a
polygon with vertices drawn from n given points, max-
imizing its minimum (sharpest) angle (Fig. 1). As we
show, there exists an optimal polygon that is convex.
To find it, we define the quality of a point, in a given
subset, to be 27 if it is interior to the convex hull of the
subset, or its interior angle if it is a vertex of the convex
hull. This quality is monotonic: as we delete points, the
quality of any remaining point can only decrease, as it
becomes a hull vertex or as it loses hull neighbors. There-
fore, it is safe to delete the point of minimum quality:
any better polygon than the convex hull of the current
subset cannot include the deleted point. A greedy algo-
rithm that repeatedly deletes the sharpest hull vertex,
and then returns the best polygon found throughout
this deletion process, finds the maxmin-angle polygon in
time O(nlogn). After detailing this method we extend
it to analogous problems of finding the max-min-solid
angle convex polyhedron in 3d We reduce max-min-angle
polygons in 3d to finding bottleneck cycles in graphs, to
which we apply related decremental greedy algorithms.

The decremental greedy nature of our algorithms both
for geometry problems (max-min angle polygons and
polyhedra) and graph problems (bottleneck cycles) sug-
gests that they share a common generalization. We
formalize a class of bottleneck optimization problems
that includes these problems and can be solved opti-
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Figure 1: The maxmin-angle simple polygon in a given
set of points

mally by decremental greedy algorithms. Our formaliza-
tion also encompasses the known problem of computing
graph degeneracy, the minimum degree of a vertex in
a subgraph chosen to maximize this degree. A classi-
cal linear-time algorithm for degeneracy [19] repeatedly
removes a minimum-degree vertex until a given graph
becomes empty; the degeneracy equals the maximum of
the degrees of the vertices at the times of their removal.
Generalizing convex hull angles and vertex degrees to
other measures of element quality, we define the bot-
tleneck subset problem, in which we seek a (nonempty)
subset of a given set of elements whose worst element
is as good as possible, according to a quality measure
that can only worsen as other elements are removed.
As we show, these problems can be solved by a decre-
mental greedy algorithm that repeatedly removes the
lowest-quality element.

Although greedy algorithms are commonly associated
with matroids, our formalization does not apply to decre-
mental greedy algorithms for a max-min matroid base
such as a maximum spanning tree, nor to greedy algo-
rithms such as Dijkstra’s algorithm. Intuitively, this
difference comes from the direction of monotonicity. In
decremental greedy matroid algorithms, elements be-
come more valuable as other elements are removed and
they become needed to complete a base, and in Dijkstra’s
algorithm, vertices in the priority queue become more
valuable as better paths are found to reach them. In
contrast, in the algorithms we study, elements become
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less valuable as other elements are removed. Our for-
malization is related to a different type of greedoid, an
antimatroid [17); see discussion following Theorem 1.

1.1 New results

Section 2 formalizes the bottleneck subset problem for
monotonic quality measures, and describes the general
decremental greedy algorithm for solving this problem.
We provide in Section 3 the following applications to
geometric optimization:

e We prove that a maxmin-angle simple polygon in
a planar point set (Fig. 1) can be chosen to be a
convex polygon, and we show how to find it in time
O(nlogn).

e We prove that a maxmin-solid angle polyhedral
surface in a 3d point set can be chosen to be a
convex polyhedron, and we show how to find it in
time O(n?).

e For a 3d point set, the maxmin-angle closed polyg-
onal curve (by which we mean a cyclic sequence of
line segments meeting end to end) may intersect
at points or even entire line segments, so we do
not call it a polygon. Even if it is a polygon, it
may use points interior to its convex hull, or may
be knotted. We show how to find a maxmin-angle
closed polygonal curve in time O(n3log* n), or in
time O(n3 (lognloglog n)2) if repeated points are
allowed but repeated line segments are forbidden.

For space reasons we relegate additional results to
the full version of this paper, including details on the
antimatroid nature of the removals performed by the
decremental greedy algorithm, on the NP-hardness of
finding 3d maxmin-angle non-self-intersecting curves,
and on algorithms for bottleneck cycles in graphs.

Those graph algorithms are used for our 3d polygonal
curve algorithms, so for completeness we state them here.
For undirected graphs the bottleneck cycle problem has
an easy non-decremental linear time algorithm. For
other types of graphs, it becomes more complicated:

e In a directed graph with m edges, or a mixed graph
with m directed and undirected edges, we show how
to find a bottleneck cycle in time O(mlog” m).

e We also consider polar graphs or switch graphs, in
which each vertex has two poles at which edges
attach, and a regular cycle must pass through both
poles of each of its vertices (Fig. 2). We show how
to find a bottleneck regular cycle in such a graph
in time O(m(logmloglogm)?).

1.2 Related work

As far as we know the graph bottleneck cycle problems
that we study are novel, but bottleneck path and bot-
tleneck spanning tree problems were already studied by
Pollack in 1960. The maximum spanning tree follows
undirected bottleneck paths, and a variant of Dijkstra’s
algorithm constructs directed bottleneck paths [23]. Ad-
ditional algorithms for these problems are known [10,14],
and they have several applications [12, 24, 26].

Connecting given points into curves or surfaces has
been studied with the goal of reconstructing an unknown
shape from sparse samples [1,3,21], in some cases assum-
ing that the curve is sampled densely enough to cause
all angles to be close to 7 [1]. The problems that we
study have a similar flavor, but for curves through a
subset of points rather than requiring a curve to pass
through or near all points. We are unaware of previous
work using the max-min-angle optimization criterion for
curves and surfaces, but this criterion is well known in
computational geometry in the context of Delaunay tri-
angulations, which maximize the minimum angle among
triangulations of given planar points [25], and has also
been applied to other forms of triangulation [2,16,20].
Maximizing the minimum angle is also important in
graph drawing, where the minimum angle at any vertex
of a graph drawing is its angular resolution [13,18].

Dynamic programming can find convex polygons with
vertices in a planar point set, optimizing a broad range of
criteria [4,9,11]. However, we do not require the maxmin-
angle polygon to be convex (instead this is an emergent
property of the result) and our algorithm is simpler and
faster than the known dynamic programming methods.
It is not obvious how to generalize the dynamic programs
for optimal convex polygons to curves or surfaces in
higher dimensions.

2 Formalization

We define a monotone bottleneck subset problem to con-
sist of a set U of elements, and a function ¢(z,S) that
takes as input a pair (z,.5) where z € S and S C U, and
produces as output a real number, the quality of x as a
member of S. We require ¢ to be monotone: whenever
x €S CTCU,wehave g(x,S) < ¢(z,T). Intuitively,
removing other elements from a subset containing x
causes the quality of x to decrease or stay the same. We
define the quality Q(S) of a nonempty subset S to be
Q(S) = mingeg q(z, ), the least quality of a member
of S, with Q() = —oo0, a flag value preventing the empty
set from being optimal. Our goal is to find a nonempty
subset whose quality is maximum, which we call the
bottleneck subset. If x is a lowest-quality element of a
subset S we call x a bottleneck element of S.

The decremental greedy algorithm for a monotone
bottleneck subset problem performs the following steps:



87

CCCG 2025, Toronto, Canada, August 13-15, 2025

1. Initialize two sets S and T to both equal U.

2. While S is not empty, repeat the following steps:

e IfQ(S) > Q(T),set T =S5.
e Find any z with ¢(z,5) < Q(T).

e Remove z from S.

3. Return T

Any bottleneck element x of S satisfies g(z, S) < Q(T),
so the algorithm always has an element that it can re-
move, although we do not require it to remove a bottle-
neck element at each step. When the bottleneck quality
B is already known, a simpler decremental algorithm can
find the bottleneck subset: repeatedly remove any ele-
ment of quality less than £ until all remaining elements
have greater value. Call this the known-§ algorithm.

Theorem 1. Every monotone bottleneck subset problem
has a unique maximal bottleneck subset. Regardless of the
choices they make at each step, the decremental greedy
algorithm and known-B algorithm both always find and
return the maximal bottleneck subset.

Proof. The union M of all bottleneck subsets is a bottle-
neck subset: each z € M belongs to a bottleneck subset
X C M, soq(x,M) > q(x,X) > 5. Because this is true
for all elements of M, Q(M) > j, the optimal value.
M is the unique maximal bottleneck subset, because it
is a superset of all other bottleneck subsets.

Because each proper superset V' O M is not a bottle-
neck subset, some element y € V has ¢(y, V) < 3, and
any such y cannot be in M by monotonicity of its quality.
Therefore, until M is reached, the known-§ algorithm
can and will remove an element of the complement of
M. And until M is reached, the decremental greedy
algorithm will have Q(7T') < 8 and the element z that it
removes will have ¢(z,S) < §; again, © ¢ M by mono-
tonicity of its quality. Therefore, until M is reached, the
decremental greedy algorithm can and will remove an
element of the complement of M.

Once M is reached, the known-f3 algorithm termi-
nates and returns it. The decremental greedy algorithm
records M as the set T that it will eventually return; it
can never subsequently change T to another set because
no other set has better quality. O

Both algorithms make arbitrary choices that can cause
them to produce different removal sequences before reach-
ing U. Their families of allowed removal sequences form
antimatroids, structures that formalize the familiar intro-
ductory programming concept of a ready list. Antima-
troids can be defined as families of sequences generated
by a process that repeatedly appends an arbitrary “avail-
able” element from a given set, under the constraint that
availability is determined by a monotonic function of

the elements that have already been appended. Less
formally, once an element becomes available, it remains
available until it is appended itself, and availability de-
pends only on the set of elements that have been chosen,
not on their order. For the known-8 algorithm, the an-
timatroid property is straightforward (the property of
having quality at most § is determined by a monotonic
function, as required) but for the decremental greedy
algorithm, it requires a proof; see the full version of this
paper.

According to the monotonicity that we require our
quality measures to satisfy, each element gets worse
(prioritized for earlier removal) as other elements around
it are removed. This behavior should be contrasted with
the quality of elements in max-min matroid problems
such as the maximum spanning tree, which can also be
solved by a decremental algorithm (remove the minimum-
weight non-bridge edge until all remaining edges are
bridges). In the decremental maximum spanning tree
algorithm, an element (an edge) either keeps its priority
(its weight) or gets a better priority (it becomes an
unremovable bridge) as the algorithm progresses, rather
than getting worse, so the decremental greedy maximum
spanning tree algorithm does not fit into our framework.

Finding graph degeneracy is a bottleneck subset prob-
lem where U is the set of vertices of a given graph G
and ¢(z, S) = degg g @ is the degree of vertex x in the
subgraph induced by S. The bottleneck elements of any
induced subgraph are its minimum-degree vertices. The
bottleneck subset is a set of vertices that induces a sub-
graph maximizing its minimum degree. The linear-time
degeneracy algorithm of Matula and Beck [19] repeatedly
removes a minimum-degree vertex, as a special case of
the decremental greedy algorithm for this quality. How-
ever, even for graph degeneracy, the antimatroid nature
of the decremental greedy algorithm appears to be novel.
To achieve this antimatroid property, we require a more
general algorithm, allowing the removal of any vertex
whose degree is at most the current quality bound, rather
than the special case that only removes minimum-degree
vertices.

3 Geometric applications

3.1 Polygons in 2d

Lemma 2. Let S be a finite set of points in the plane.
Then there exists a convez polygon P with vertices in S
that maximizes the minimum angle among all closed
polygonal curves (allowing repeated vertices and edges)
with vertices in S.

Proof. Because S determines finitely many angles, the
max-min angle among closed polygonal curves exists. Let
W be any closed polygonal curve through S attaining
this angle, and let P be the convex hull of W. Then,
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compared to W, P may omit some vertices and may
increase the angle of the others that remain; both of
these changes can only increase the sharpest angle in P,
relative to the sharpest angle in W. Therefore, P is also
a max-min angle closed polygonal curves, as was stated
to exist in the lemma. O

Theorem 3. Let S be a finite set of points in the plane.
Then in time O(nlogn) we can find a convex polygon P
with vertices in S that mazimizes the minimum angle
among all closed polygonal curves in S.

Proof. We perform the following steps:

1. Initialize a dynamic convex hull data structure to
contain all points of S.

2. Initialize parameters 0 to the sharpest angle of the
hull, and s to zero. These parameters will store the
best angle found so far, and the number of removed
points corresponding to that best angle.

3. Initialize an empty list L of removed points.

4. While the current convex hull is non-degenerate (it
has more than two vertices), repeat the following
steps:

e Find and remove from the dynamic hull the
vertex with the sharpest angle (choosing arbi-
trarily any vertex of sharpest angle in case of
ties) and append this vertex to L.

e Set 6 to the maximum of its previous value
and the sharpest angle of the current hull, and
if the result is an increase in 6 then set s to
the current length of L.

5. Return the convex hull of the point set obtained
from S by removing the first s points of L.

This is a decremental greedy algorithm where the
quality of a point is its interior angle, if it is a convex
hull vertex, or 2w otherwise. This quality is monotonic
and the algorithm finds a max-min angle convex polygon
by Theorem 1. This polygon is also a max-min angle
closed polygonal curve by Theorem 2.

The sharpest angle in the current hull can be main-
tained during this algorithm using a priority queue of the
current convex hull vertices and their angles, updated
whenever the dynamic convex hull structure adds a ver-
tex to the hull or changes the neighbor of an existing
vertex. This structure requires O(n) updates over the
course of the algorithm and therefore takes O(nlogn)
time. Decremental or fully dynamic convex hull data
structures that take O(logn) time per update are also
known [5,15], leading to an O(nlogn) time bound for
that part of the algorithm as well. O

3.2 Polyhedra in 3d

In this section we seek a polyhedral surface, with vertices
at a subset of a given point sets, maximizing the solid
angle interior to the surface as viewed from any point
(or vertex) of the surface. To avoid definitional issues we
consider only non-self-intersecting surfaces. Analogously
to the results of the previous section, we have:

Lemma 4. Among non-self-intersecting polyhedral sur-
faces having vertices at a subset of given points in R3,
there exists a convex polyhedron that mazimizes the min-
imum solid angle.

Proof. Asin Theorem 2, consider any polyhedral surface
that maximizes the minimum solid angle, and take its
convex hull. This can only remove vertices and improve
the solid angle at the remaining vertices, so it must also
maximize the minimum solid angle. O

As in the two-dimensional case, we will need a data
structure for decremental convex hulls. Chan has studied
this problem [7,8], but his algorithms do not represent
the hull explicitly, instead using an implicit represen-
tation that allows only extreme point queries. In our
case, we need to find the solid angles of the vertices of
the hull, not possible with Chan’s structure. Another
data structure, of Buchin and Mulzer [6] allows hulls
of any subset of an input point set to be computed in
randomized expected time O(n(log log n)2) on a word
RAM. Instead, we use a simpler method for maintaining
three-dimensional convex hulls explicitly, in time O(n)
per point deletion. Such a data structure was described
by Overmars [22] (Theorem 6.4.1.6, p. 90), but to keep
the presentation self-contained we outline a simplified
version. The simplified data structure consists of a bal-
anced binary search tree for the z-coordinate order of
the given points, together with explicitly represented
hulls of the sets of not-yet-deleted points in each subtree.
After each deletion, each changed hull can be computed
by merging two child hulls in time linear in its subtree.
The total time for all merges adds in a geometric series
to O(n) per deletion. The space for this data structure
is O(nlogn). The version of Overmars improves the
space to O(nloglogn) by storing only the hulls of large
subsets of points, and makes the data structure fully
dynamic rather than decremental using weight-balanced
trees rather than static balanced trees, but we do not
need those advances.

Theorem 5. Let S be a finite set of points in R3. Then
in time O(n?) we can find a convex polyhedron P with
vertices in S that mazximizes the minimum solid angle
among all non-self-intersecting polyhedral surfaces having
vertices at a subset of S.

Proof. We perform the following steps:
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1. Initialize a dynamic convex hull data structure for
the points of S.

2. Initialize parameters 6 to the sharpest solid angle
of the hull, and s to zero. These parameters will
store the best angle found so far, and the number
of removed points corresponding to that best angle.

3. Initialize a list L of removed points to an empty
list.

4. While the current convex hull is non-degenerate (it
has nonzero volume), repeat the following steps:

e Find and remove the vertex with the sharpest
solid angle (choosing arbitrarily any vertex of
sharpest angle in case of ties) and append this
vertex to L.

e Set 6 to the maximum of its previous value
and the sharpest angle of the current hull, and
if the result is an increase in # then set s to
the current length of L.

e Update the hull of the remaining points.

5. Return the convex hull of the point set obtained
from S by removing the first s points of L.

Using the dynamic hull data structure outlined above,
each iteration of the main loop takes time O(n), and the
whole algorithm takes time O(n?). O

3.3 Closed polygonal curves in 3d

To model the search for a closed polygonal curves
through a given system of line segments in 3d, allowing
repeated vertices but without allowing any line segment
to be repeated, we use polar graphs. These are graphs in
which the edges are undirected, but are attached to one
of two poles of each vertex. A regular cycle in such a
graph is a simple cycle for which the two edges incident
to each vertex are attached to different poles: if the
cycle enters a vertex via one pole, it must exit via the
other pole. In the full version of this paper we describe
a decremental greedy algorithm for finding a minmax-
weight regular cycle in a polar graph with m edges in
time O(m(logmloglogm)?). For a given set S of points
in R3, we may define a weighted polar graph G(S5), as
follows (Fig. 2):

e The vertices of G(S) are the line segments deter-
mined by pairs of points in S.

e The two poles of each vertex of G(S) are the two
endpoints of the corresponding line segment.

e The edges of G(S) connect pairs of line segments
that form a three-point polygonal chain and are
weighted by the angle at the middle point of the
chain.

Figure 2: A polar graph with six vertices representing
the line segments determined by pairs of four points a, b,
¢, and d, and 12 edges labeled by the angles determined
by triples of points. The two poles of each vertex are
labeled by the points. A regular cycle must enter and
exit the vertices it visits via opposite poles.

e For each vertex and incident edge in G(S), the pole
of the vertex to which the edge is attached is the
middle point of the three-point polygonal chain that
defines the edge.

Then, a regular cycle in this graph corresponds to a
closed polygonal curve in 3d, allowing repeated points
but not allowing repeated line segments. The minimum
edge weight in this cycle is the sharpest angle of the
curve. If repeated line segments are to be allowed, we
can instead replace the polar graph by an ordinary graph,
its double cover. This has two copies of each vertex of
the polar graph, and two directed edges for each edge
of the polar graph, in each direction. Each copy of a
vertex is incident to the incoming directed edges for one
pole of the vertex and to the outgoing directed edges
for the other pole. The resulting directed graph is skew-
symmetric (the vertex bijection that swaps the two copies
of each polar vertex also reverses all the directed edges)
and has been used in algorithms for polar graphs. When
a directed cycle in the double cover of G(S) uses both
copies of a vertex, it corresponds to a closed polygonal
curve that uses a line segment twice, in both directions.
In the full version of this paper we describe a decremental
greedy algorithm for finding a bottleneck directed cycle
in a directed graph in time O(mlog™ m).

Theorem 6. We consider mazmin-angle closed polygo-
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nal curves in a 3d point set that may use points interior
to its convex hull, may be knotted, and may self-intersect.
If both repeated points and repeated line segments are al-
lowed, we can find such a curve in time O(n3log* n). If
repeated points but not repeated line segments are allowed,
we can find it in time O(n3(logn10g log n)2)

Proof. We construct G(S), with O(n?) edges, and then
find either a bottleneck directed cycle in the double cover
of G(9), or a bottleneck regular cycle in G(.5), accord-
ing to whether we allow or disallow repeated segments,
respectively. O

For completeness, we state:

Theorem 7. It is NP-complete to find the maxmin-
angle simple polygon for points in R3, for points on a
unit sphere given by rational Fuler angles.

We defer the proof to the full version of this paper.

4 Conclusions

We have formalized a broad family of decremental greedy
problems for monotone bottleneck subset problems, gen-
eralizing existing graph degeneracy algorithms, and
shown its applicability in developing new algorithms in
computational geometry and graphs. We have found sim-
ple greedy decremental algorithms for several maxmin-
angle problems in geometric optimization: finding a
planar polygon through given points maximizing the
minimum angle, finding a 3d polyhedral surface through
given pints maximizing the minimum solid angle, and
finding a (self-intersecting) 3d closed polygonal curve
through given points maximizing the minimum angle.
On the other hand, constraining the 3d polygonal curve
to be non-self-intersecting appears to make the problem
computationally infeasible.

There appears to be room for improvement in our
polyhedral surface and 3d curve time bounds. It would
also be of interest to find other problems to which the
same greedy decremental approach applies.
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