
92 CCCG 2025, Toronto, Canada, August 13–15, 2025

On t-fold Totally-Concave Polyominoes

Gill Barequet* Neal Madras� Johann Peters�

Abstract

A t-fold totally concave polyomino (t-TCP) is an edge-
wise connected collection of square cells with t or more
gaps in every row and column. We prove that the mini-
mum area of the smallest possible t-TCP is 21 for t = 1,
50 for t = 2, and 6(t + 1)2 − 1 for t > 2. Answering a
previous conjecture on the affirmative, we prove that
the t-TCP counting sequence has the same leading ex-
ponential order as all polyominoes, from which we prove
that the ratio of successive terms converges.

1 Introduction

A polyomino is an edge-wise connected collection of
unit squares in the plane. That is, given a connected
subgraph G of the square lattice (with nodes at in-
teger coordinates), the polyomino determined by G is
PG :=

⋃
(x,y)∈G [x, x + 1] × [y, y + 1]. To consider only

one translate of each polyomino, we use the convention
that every polyomino P satisfies P ⊂ [0,∞) × [0,∞),
P ∩({0}×R) ̸= ∅, and P ∩(R×{0}) ̸= ∅. A row or a col-
umn ξ of a polyomino has a gap if ξ contains at least two
maximal sequences of consecutive cells; likewise, ξ has t
gaps if it consists of at least t+1 maximal sequences of
consecutive cells. Totally Concave Polyominoes (TCPs)
are those polyominoes in which every row and ev-
ery column of cells has at least one “gap.” Figure 1
shows a non-TCP, while Figure 2(a) shows a

Figure 1:
Not TCP.

similar TCP. The difference between the two
polyominoes is that the former one is missing
the bottom left cell. Note that it is some-
times useful to consider a polyomino just as
a subgraph of the square lattice, and some-
times equivalently as a collection of square
cells. Throughout the paper, our drawings
will show both, when convenient. TCPs were intro-
duced in the Handbook of Discrete and Computational
Geometry [6] as an extremal opposite of convex poly-
ominoes, a much more extensively studied set for which
an asymptotic formula is known [7].
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TCPs were first investigated in-depth recently in ref-
erence [2]. There,

i. The minimum possible area for a TCP was proved
to be 21;

ii. The number of area-n TCPs, κ(n), was evaluated
for 21 ≤ n ≤ 35; and

iii. The TCP growth constant, λκ := limn→∞
n
√
κ(n)

was shown to exist, bounded from below, and con-
jectured to be equal to λ := limn→∞

n
√
A(n), the

growth constant of all polyominoes.

In this paper, for each positive t, we consider t-fold
TCPs (t-TCPs): those with at least t gaps in every row
and column. Figure 2 shows a few examples which are in
fact of the minimum possible sizes (see Section 3). We
generalize the result on minimal examples to t-TCPs,
answer the mentioned conjecture, and prove the exis-
tence of another important limit by strengthening an
established technique.

The symbols An, κn, and κt,n will denote the sets of
area-n polyominoes, TCPs, and t-TCPs, respectively,
while A(n), κ(n), and κt(n) will denote the number of
these objects. In addition, we use the following lexico-
graphic order of cells on the square lattice.

Definition 1 (Lexicographic Order) Given two cells on
the square lattice, c1 = [x1, x1+1]× [y1, y1+1] and c2 =
[x2, x2+1]×[y2, y2+1], we say that c1 is lexicographically
smaller than c2 if x1 < x2, or if x1 = x2 and y1 < y2.

2 A Physical Context

In statistical physics, it is generally believed that typi-
cal polyominoes (and, more generally, lattice trees and
lattice animals, which are models of branched polymers)
display a fractal geometry in the limit as their size gets
large. This is supported by non-rigorous scaling the-
ory as well as by simulations. However, almost nothing
has been proven rigorously about the asymptotic geom-
etry of these objects (except in high dimensional space,
which here means above eight dimensions). Fractal be-
havior in two dimensions would imply in particular that
a vertical or horizontal line intersecting a large poly-
omino would typically have gaps on all length scales.
This seems hard to prove, but a simpler task would
be to show that, for each positive integer t, there is
a reasonable probability that most lines intersecting a
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sufficiently-large polyomino would have at least t gaps.
Our result upgrades “most” to “every,” but replaces
“reasonable probability” with “probability that is not
exponentially small”. (In fact, it is only polynomially
small under the standard belief that A(n) is asymptot-
ically proportional to n−θλn for some constant θ > 0.)
The probability for a given size, of course, is the ratio of
t-TCPs to all polyominoes of that size. We conjecture
that this probability is bounded away from 0 as the size
tends to infinity. (A simple argument proves that it is
bounded away from 1.) This conjecture seems to be a
difficult problem to resolve rigorously, but we view our
theorem as a first rigorous corroboration (albeit a mild
one) of the behavior that physicists expect.

3 Minimum Area of t-TCPs

We will prove a lower bound on the area of t-TCPs for
all t, and construct examples to prove it is tight, which
proves the following theorem, our first main result.

Let mt be the minimum possible area of a t-TCP.

Theorem 1 m1 = 21, m2 = 50, and mt = 6(t+1)2−1
for all t > 2. □

The theorem above is the combination of lemmata 3
and 4 below.

3.1 Lower Bound

We use the notion of the minimum bounding box of a
polyomino.

Definition 2 The minimum bounding box of a poly-
omino P is the least pair of integers (k, ℓ), such that
P ⊂ [0, k] × [0, ℓ]. That is, the minimum bounding box
of P is contained in any other bounding box of P .

The relations in Lemma 2 for the t = 1 case were
first described in reference [2]. What follows is to our
knowledge the first treatment of them in the general-t
case.

Lemma 2 For a t-fold TCP with n cells in a (k, ℓ)-
bounding box,

(t+ 1)(k + ℓ)− 1 ≤ n ≤ kℓ− t ·max {k, ℓ} − 2t.

Proof. By rotating if necessary, we may assume k ≥ ℓ.
For the lower bound, partition the edges of the poly-
omino’s cells into outside, inside, and hidden edges,
which we will say number o, i, and h, respectively. Out-
side edges face away from the polyomino, inside edges
back into it, and hidden edges are those in between two

cells. For example, the U-pentomino has ten
outside edges (red), two inside edges (blue), and eight

hidden edges (green). Being the perimeter, o = 2k+2ℓ.
By the t-TC property, i ≥ 2tk+2tℓ. By connectedness,
every polyomino has a spanning tree with at least n− 1
edges, and so h ≥ 2n−2. The lower bound follows from
this and the fact that we counted exactly 4n = o+ i+h
edges. For the upper bound, notice that we must re-
move at least tk cells from [0, k] × [1, ℓ − 1] in order
to have k-many t-fold concave columns, and a further t
cells from the top and the bottom rows to guarantee
their t-fold concavity. Finally, we take in the statement
of the lemma the maximum of k and ℓ since their roles
can be exchanged. □

These relations restrict the possible areas of t-TCPs
in (k, ℓ) bounding boxes rather significantly. We see this
by solving an integer non-linear program (NLP) in the
general-t case using duality. Guenin et al. [8] provide a
friendly reference for the techniques used.

Lemma 3 m1 ≥ 21, m2 ≥ 50, and mt ≥ 6(t+ 1)2 − 1
for t > 2.

Proof. Assume, without loss of generality, that k ≥ ℓ.
For a t-TCP to exist in a (k, ℓ) bounding box, the lower
and upper bounds of Lemma 2 must both hold, i.e.,
their difference H(k, ℓ) := kℓ−(2t+1)k−(t+1)ℓ−2t+1
must be non-negative. Minimizing the lower bound of
Lemma 2, we therefore have the integer NLP (1). To
solve (1), we will consider two auxiliary NLPs, (2) and
(3).

min k + ℓ

s.t. H(k, ℓ) ≥ 0,

k − ℓ ≥ 0, and

k, ℓ ∈ Z+.

(1)

min k + ℓ

s.t. H(k, ℓ) ≥ 0,

k − ℓ ≥ 0, and

k, ℓ ≥ 0.

(2)

min k + ℓ

s.t. H(k, ℓ) ≥ 0,

k − ℓ ≥ 1, and

k, ℓ ≥ 0

(3)

First, we solve the NLP (2). Noting the region
{(k, ℓ) : H(k, ℓ) ≥ 0, k, ℓ > 0} is convex, we may de-
fine a linear relaxation by a gradient, the LP (4). We
also write its dual, the LP (5),

min
[
1 1

] [
k ℓ

]T
s.t.

[
1 −1
1 −αt

] [
k
ℓ

]
≥

[
0

βt − αtβt

]
where k, ℓ ≥ 0

(4)

max
[
0 (βt − αtβt)

] [
x y

]T
s.t.

[
1 1
−1 −αt

] [
x
y

]
≤

[
1
1

]
where x, y ≥ 0

(5)

where the number βt is such that (βt, βt) is the point
of intersection of the line k = ℓ and the hyperbola
H(k, ℓ) = 0, and αt is the derivative of k with respect
to ℓ of the hyperbola at the point (k, ℓ) = (βt, βt). Ex-
plicitly,

βt =
3

2
t+ 1 +

√
9

4
t2 + 5t and αt =

t+ 1− βt

βt − 2t− 1
.

To solve the primal-dual pair (4)-(5), notice that (k̄, ℓ̄) =
(βt, βt) and (x̄, ȳ) = ( 1+αt

αt−1 ,
2

1−αt
) are feasible in (4)
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and (5), respectively, both with the objective value 2βt.
Thus, it follows by weak duality that (k̄, ℓ̄) is optimal in
the LP (4). Since (k̄, ℓ̄) is also feasible in the NLP (2),
it is optimal there too.
We will also solve the auxiliary NLP (3), just as we

solved (2). First, we find an LP relaxation of NLP (3),
the LP (6), and write its dual, the LP (7),

min
[
1 1

] [
k ℓ

]T
s.t.

[
1 −1
1 −δt

] [
k
ℓ

]
≥

[
1

γt − δtγt + 1

]
where k, ℓ ≥ 0

(6)

max
[
1 (γt − δtγt + 1)

] [
x y

]T
s.t.

[
1 1
−1 −δt

] [
x
y

]
≤

[
1
1

]
where x, y ≥ 0

(7)

where γt and δt are defined analogously to αt and βt.
The number γt is such that (γt + 1, γt) is the point of
intersection between the line k = ℓ+1 and the hyperbola
H(k, ℓ) = 0, and δt is the derivative of k with respect
to ℓ of the hyperbola at the point (k, ℓ) = (γt + 1, γt).
Explicitly,

γt =
3

2
t+

1

2
+

√
9

4
t2 +

11

2
t+

1

4
and δt =

t− γt
γt − 2t− 1

.

Observe that (k̄, ℓ̄) = (γt + 1, γt) and (x̄, ȳ) =
( 1+δt
δt−1 ,

2
1−δt

) are feasible in (6) and (7), respectively,
both with objective value 2γt + 1. Thus, it follows by
weak duality that (k̄, ℓ̄) is optimal in (6). Since (k̄, ℓ̄) is
feasible also in the NLP (3), it is optimal there too.
We are now ready to solve the original integer

NLP (1). In the t = 1 case, the optimal value of (1) is at
least the ceiling of the minimum of the optimal values
of (4) and (6), which is 11. Since (k, ℓ) = (γ1 + 1, γ1) =
(6, 5) realizes this bound, it is optimal in (1). For
the t = 2 case, γ2 = 8 is an integer. Hence, (k, ℓ) = (9, 8)
is an optimal integer solution to (3). Because the only
integer points feasible in (2) but not in (3) are on the
line k = ℓ, the least of which is (k, ℓ) = (⌈β2⌉, ⌈β2⌉) =
(9, 9), we have that (k, ℓ) = (8, 9) is optimal in (1).
For t > 2, we observe 3t + 3 > βt, γt > 3t + 2. Since
(k, ℓ) = (γt + 1, γt) is optimal in (3), all feasible inte-
gers k > ℓ have k + ℓ ≥ ⌈2γt + 1⌉ ≥ 6t + 6. Since the
least feasible integer k = ℓ is ⌈βt⌉ = 3t + 3, we have
that (k, ℓ) = (3t + 3, 3t + 3) is optimal in (1). The re-
sult follows from these solutions to (1) and Bound (1)
of Lemma 2. □

We remark that one could alternatively perform the
above proof by finding points satisfying the Karush-
Kuhn-Tucker conditions in NLPs (2) and (3).

3.2 Upper Bound

To bound the minimum area of a t-TCP from above by
n ∈ N inclusive, it suffices to find a t-TCP of area n.
For t = 1, 2, the examples given in Figures 2(a,b) are
enough. For t > 2, we require a general construction.

Lemma 4 For t ≥ 3, mt ≤ 6(t+ 1)2 − 1.

(a) t = 1
n = 21 (b) t = 2

n = 50 (c) t = 3
n = 95

(d) t = 4
n = 149 (e) t = 5

n = 215

Figure 2: Minimum-area TCPs for 1 ≤ t ≤ 5
.

Proof. Consider the following construction, in four
steps. It is illustrated in Figure 3 in the t = 3 case.

1. Create a collection of cells, placing one cell about a
point (x, y) ∈ {0, 1, 2, · · · , 3t+2}×{0, 1, 2, · · · , 3t+
2} if and only if the sum (x + y) is not congruent
to 2 modulo 3. This collection has 6(t + 1)2 cells,
and 2(t+ 1) connected components. Each row and
column has at least t gaps, and some have more.

2. There are (t+1) columns (resp., rows) with (t+1)
gaps, at x ≡ 2 mod 3 (resp., y ≡ 2 mod 3). Place
more cells about points of the form (3i+1, 3i+1),
for 0 ≤ i ≤ t. The resulting collection of cells
has 6(t+ 1)2 + (t+ 1) cells, and (t+ 1) connected
components. Each row and column retains at least
t gaps.

3. Step 2 created multiply connected components.
Therefore, we may remove the 2t + 2 cells about
points of the form (3i + 1 ± 1, 3i + 1 ± 1) for
0 ≤ i ≤ t without creating more connected com-
ponents. There are still at least t gaps in each col-
umn and row, since (3i, 3i) is adjacent to (3i+1, 3i)
and (3i, 3i+1), while (3i+2, 3i+2) is adjacent to
(3i+ 2, 3i+ 1) and (3i+ 1, 3i+ 2). The result is a
collection of 6(t+ 1)2 − (t+ 1) cells.

4. We can connect the remaining (t + 1) connected
components to each other with t additional cells,
centered about points of the form (3i, 3i − 1) for
1 ≤ i ≤ t. No such addition breaks t-fold concavity,
since (3i, 3i−1) is not adjacent to either (3i+1, 3i+
1) or (3i, 3i), each removed in Step 3. We are left
with a t-TCP of area 6(t+ 1)2 − 1.
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7→ 7→ 7→

Step 1 Step 2 Step 3 Step 4

Figure 3: Constructing a t-TCP of area 6(t+ 1)2 − 1.

Since this construction works for all t > 2, the claim is
proved. □

Note that the examples produced by the above con-
struction are different from the ones given in Figure 2.

Corollary 5 For t ≥ 1, there are at least 2t-many t-
TCPs of area 6(t+ 1)2 − 1.

Proof. In Step 4, we could have just as well placed a
cell about the point (3t, 3t+1) whenever we placed one
about (3t+ 1, 3t), giving t binary choices. □

3.3 Structure of Minimum-Area TCPs

Figure 2 shows some minimum-area t-TCPs for 1 ≤ t ≤
5. Lemma 6 below characterizes the bounding boxes of
minimal t-TCPs. The existence of non-square minimal
t-TCP for t > 3 is an open question. The construction
in the proof of Theorem 4 shows that there exists a
minimal t-TCP in a (3t+3, 3t+3) bounding box for all
t > 2. However, the 3-TCP with a (13,11) bounding box
shown in Figure 2(c) is currently the only example of a
minimal t-TCP that does not have a square bounding
box for t > 2. The following results also relate the
dimension of a t-TCPs bounding box to its connectivity
and its concavity.

Lemma 6 If a t-TC polyomino has a (k, ℓ) bounding
box and its area is (t+ 1)(k + ℓ)− 1, then
(i) it is a tree; and
(ii) it has exactly t gaps in every row and every column.

Proof. We prove the contrapositive. If P is an area-n
t-TCP that is not a tree, the bound for the number of
hidden edges (see the proof of Lemma 2) becomes h ≥
2n. If P has more than t gaps in some row or column,
the bound on the number of inside edges becomes i ≥
2t(k + ℓ) + 2. In either case, we get n ≥ (t + 1)(k + ℓ)
given that i+ o+ h = 4n, hence n ̸= (t+ 1)(k + ℓ)− 1.
The claim follows. □

We now present our second main result.

Theorem 7 Suppose that P is a minimum-area t-TCP
of area n whose bounding box is B = (k, ℓ) (for k ≥ ℓ).
If t = 1, then B = (6, 5). If t = 2, then B = (9, 8).
Otherwise, if t ≥ 3, then B is either (3t + 3, 3t + 3) or
(3t+4, 3t+2). Moreover, P is a tree and it has exactly t
gaps in every row and every column.

Proof. Let P be a t-TCP with area mt in a (k, ℓ)
bounding box. We claim that

(t+ 1)(k + ℓ)− 1 = mt. (8)

By Lemma 2, we have that mt ≥ (t+1)(k+ ℓ)−1. The
pair (k, ℓ) is feasible in the integer NLP (1) because P
is a t-TCP. Since mt is equal to the lower bound given
by Lemma 3, mt is the minimum of (t + 1)(k + ℓ) − 1
for feasible (k, ℓ) pairs, that is, mt ≤ (t+ 1)(k + ℓ)− 1.
Hence, Equation (8) holds, and by Lemma 6 we have
that all minimal t-TCPs are trees and have exactly t
gaps everywhere.

It is easy to check that the unique solutions that
satisfy Equation (8) and the relations in Lemma 2
are (k, ℓ) = (6, 5) in the t = 1 case and (k, ℓ) = (9, 8)
in the t = 2 case. A manual inspection of all 1-TCPs
(provided in reference [2]) is also available for t = 1.

For t ≥ 3, notice that the solutions to Equation (8)
with k ≥ ℓ take the form (k, ℓ) = (3t+3+∆, 3t+3−∆)
for some non-negative integer ∆ ≥ 0. Expanding and
rearranging the relations in Lemma 2 in this case give
t(1 −∆) + 4 −∆2 ≥ 0, which is possible only if ∆ = 0
or 1. □

4 Equality of the t-TCP Growth Constants to λ

It is straightforward to prove the existence of the t-
TCP growth constants via a concatenation argument
and supermultiplicativity, as was done previously for 1-
TCPs [2] and is common for other families of lattice
animals [1, 5, 10].

Theorem 8 For all t > 0, λκt
:= lim

n→∞
n
√

κt(n) exists.

Moreover, λκt
:= supn

n
√

κt(n).

Proof. Since every t-TCP is a polyomino, n
√
κt(n) ≤

n
√

A(n). Additionally, n
√
A(n) → λ as n → ∞. We con-

clude that the sequence {n
√
κt(n)}n>0 is bounded. We

will also show that for all t, n,m > 0, κt(n) · κt(m) ≤
κt(n+m), i.e., {κt(n)} is supermultiplicative. The re-
sult then follows from Lemma 1 of Ref. [10] which states
precisely the existence of the hypothesized limits for su-
permultiplicative sequences that are bounded as above.

To see the supermultiplicative relation, we concate-
nate two t-TCPs of sizes n and m. Given P1 ∈ κt,n and
P2 ∈ κt,m, let P3 be the union of P1 and the transla-
tion of P2 such that its lexicographically smallest cell
lies immediately to the right of P1’s greatest cell. Then,
P3 uniquely determines an element of κt,n+m since all
rows and columns still have at least t gaps, and the orig-
inal pair P1, P2 can be determined uniquely from P3 by
separating the n lexicographically-smallest from the m
lexicographically-biggest cells of P3.
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To prove λκt
:= supn

n
√
κt(n), observe that for each

n, the supermultiplicative relation implies that the sub-
sequence { n2m

√
κt(n2m) : m ≥ 0} is increasing. Indeed,

its limit must be λκt , so
n
√
κt(n) ≤ λκt for all n > 0 □

Theorem 8 can be used for obtaining lower bounds
on λκt

. If κt(n) ≥ x, then λκt
≥ n

√
x. That is how

the best known lower bound on λκ1
, which is 2.4474,

was found (see reference [2]). However, the following
construction does better. Compare the previous known
bound to the one given in Corollary 10 below.

Theorem 9 The growth constant for t-TCPs, λκt
,

equals λ for all t > 0.

Proof. We partition the set of all n-ominoes into a
polynomial number of subsets. Given any polyomino P ,
we define the following quantities.

Xspan(P ) =max {x : (x, y) ∈ P for some y},
Yspan(P ) =max {y : (x, y) ∈ P for some x},

X−
0 (P ) =min {x : (x, 0) ∈ P},

X+
0 (P ) =min {x : (x, Yspan(P )) ∈ P},

Y −
0 (P ) =min {y : (0, y) ∈ P},

Y +
0 (P ) =min {y : (Xspan(P ), y) ∈ P}.

Note that if the span of a polyomino P in either
of the axes is d, then the coordinates of cells of P
along that axis are in the range [0, d − 1]. Then, the
set Pn[a, b, c, d, e, f ] is defined as

Pn[a, b, c, d, e, f ] = {P ∈ An : Xspan(P ) = a,

Yspan(P ) = b,X−
0 (P ) = c,X+

0 (P ) = d,

Y −
0 (P ) = e, Y +

0 (P ) = f}.

See Figure 4 for an illustra- a

b

d

c f
e

origin

P

Figure 4: A typical
member of
Pn[a, b, c, d, e, f ].

tion of a typical member of
Pn[a, b, c, d, e, f ]. It follows from
the connectedness of P that
Pn[a, b, c, d, e, f ] = ∅ if any of
a, b, c, d, e, f are greater than n,
hence,

An =
⋃

0<a,b≤n
0≤c,d,e,f<n

Pn[a, b, c, d, e, f ].

(9)

Therefore, there exist a◦, b◦, c◦, d◦, e◦, f◦ for which

|Pn[a
◦, b◦, c◦, d◦, e◦, f◦]| ≥

(
A(n)
n6

)
. For each

i, j ∈ {0, 1, . . . , t}, let πi,j be any element of

Pn[a
◦, b◦, c◦, d◦, e◦, f◦]. There are at least

(
A(n)
n6

)(t+1)2

choices for {πi,j}0≤i,j≤t.
We now construct to each choice of {πi,j}

a unique t-TCP. First we define the polyomino
B ( ), and its 90◦ clockwise-rotated version,
B⟳. We use the notation PG as defined in

the introduction. We set B := PG, where
G := {(0, 0), (1, 0), (1, 1), (2, 1), (3, 1), (3, 0), (4, 0)}, and
B⟳ := PG⟳ , where G⟳ := {(0, 0), (0, 1), (1, 1), (1, 2),
(1, 3), (0, 3), (0, 4)}.

Let P + v⃗ denote the translation of a polyomino P
by a vector v⃗ ∈ Z2. We are now ready to define our
constructed t-TC polyomino, TCP({πi,j}0≤i,j≤t). De-
fine {π′

i,j}0≤i,j≤t, {π̂i,j}0≤i,j≤t, {Bi,j}0≤i<t, 0≤j≤t, and

{B⟳
i,j}0≤i≤t, 0≤j<t, by the following rules.

π′
i,j =


πi,j i, j even

reflection of πi,j through the line y = b◦/2 i even, j odd

reflection of πi,j through the line x = a◦/2 i odd, j even

reflection of πi,j through y = b◦

2
and x = a◦

2
i, j odd

π̂i,j = π′
i,j + (i(a◦ + 5), j(b◦ + 5))

Bi,j =


B + (i(a◦ + 5) + a◦, j(b◦ + 5) + f◦) i, j even

B + (i(a◦ + 5) + a◦, j(b◦ + 5) + b◦ − f◦ − 1) i even, j odd

B + (i(a◦ + 5) + a◦, j(b◦ + 5) + e◦) i odd, j even

B + (i(a◦ + 5) + a◦, j(b◦ + 5) + b◦ − e◦ − 1) i, j odd

B⟳
i,j =


B⟳ + (i(a◦ + 5) + d◦, j(b◦ + 5) + b◦) i, j even

B⟳ + (i(a◦ + 5) + c◦, j(b◦ + 5) + b◦) i even, j odd

B⟳ + (i(a◦ + 5) + a◦ − d◦ − 1, j(b◦ + 5) + b◦) i odd, j even

B⟳ + (i(a◦ + 5) + a◦ − c◦ − 1, j(b◦ + 5) + b◦) i, j odd

Thus, Bi,j intersects each of π̂i,j and π̂i+1,j in one
edge, and B⟳

i,j intersects each of π̂i,j and π̂i,j+1 in one
edge. Finally, define

TCP ({πi,j}0≤i,j≤t) = ⋃
0≤i,j≤t

π̂i,j

 ∪

t−1⋃
i=0

t⋃
j=0

Bi,j

 ∪

 t⋃
i=0

t−1⋃
j=0

B⟳
i,j

 .

See Figure 5 for an illustration of this construction. It
is evident that TCP({πi,j}) uniquely determines {πi,j}.
It is easily verified by inspecting rows and columns that
TCP({πi,j}) is indeed t-TC, although we must be care-
ful with the following special case. If e◦ or f◦ is b◦−1
or 0, then we must redefine Bi,t for 0 ≤ i < t, replac-
ing B ( ) in the above with its vertical reflection
( ) in the line y = 1

2 . Without this hack, the top
row of TCP({πi,j}) may not be t-TC, consisting only of
the Bi,t kinks. The same applies to B⟳

t,j for the case in

which c◦ or d◦ is a◦−1 or 0, where we must replace B⟳

with its horizontal reflection in the line x = 1
2 .

The constructed t-TC polyomino TCP({πi,j}) has
φ := (t + 1)2n + 14t(t + 1) cells. The 14t(t + 1) term
comes from the 7 cells in each of Bi,j and B⟳

i,j . There-

fore, we have that κt(φ) ≥
(

A(n)
n6

)(t+1)2

, and hence we

have that
φ√

κt(φ) ≥
φ
√(

A(n)
n6

)(t+1)2

.

We now let n → ∞. Note that the indices φ define a
subsequence of the sequence κt(n). Since the sequence
n
√

κt(n) converges, so does the subsequence, and to the
same limit. The right side of the final inequality shows



37th Canadian Conference on Computational Geometry, 2025 97

Figure 5: A “blob” representation of the polyomino
TCP({π̂i,j}0≤i,j≤t). The blobs represent π̂i,js, and the
“squiggles” between them the Bi,js and B⟳

i,js. Notice
how the π̂i,js are flipped throughout the construction
to match along their boundaries.

that the limit is at least λ. However, the limit cannot
exceed λ, because t-TCPs are a proper subset of all
polyominoes. Therefore, it must be that λκt

= λ. □

Corollary 10 For all t > 0, we have that 4.0025 ≤
λκt ≤ 4.5252.

Proof. These are just the best known lower [3] and
upper [4] bounds on λ. □

We have just proved that t-TCPs are not exponen-
tially rare in the polyominoes. That begs the question;
how common are t-TCPs? The next theorems show
that they are not overwhelmingly so: The proportion of
polyominoes that are t-TCPs is bounded away from 1.

First, we need a ratio-limit theorem.

Theorem 11 (Ratio Limit Theorem for t-TCPs)

lim
n→∞

κt(n+1)
κt(n)

exists and equals λκt
. □

The proof is given in the full version of the paper.

Theorem 12 lim supn→∞
κt(n)
A(n) ≤ λ

λ+4(t+1) ∀t > 0.

Proof. We map every t-TCP of size n−1 to all ele-
ments of An obtained by attaching one cell immedi-
ately to the right (resp., left) of any cell in its right-
most (resp., leftmost) column, or above (resp., below)
any cell in its topmost (resp., bottommost) row. This
way, every polyomino in κt,n−1 is mapped to at least

4(t + 1) polyominoes in An, all images are distinct,
and all images are not t-TCPs. Hence, we have that
A(n) ≥ κt(n) + 4(t+1)κt(n− 1), that is, A(n)/κt(n) ≥
1 + 4(t + 1)κt(n − 1)/κt(n). Therefore, by the Ratio
Limit Theorem for t-TCPs (Theorem 11),

lim sup
κt(n)

A(n)
≤ lim

n→∞

1

1 + 4(t+1)κt(n−1)
κt(n)

=
1

1 + 4(t+1)
λ

=
λ

λ+ 4(t+ 1)
.

□

Note that this does not imply that κt(n)/A(n) (t
fixed) converges to a positive value (as a function of
n), or converges at all, when n → ∞. For example, if
A(n) ∼ c0n

θ0λn (which is widely believed) and κt(n) ∼
ctn

θtλn, where θt ≤ θ0, then limn→∞ κt(n)/A(n) would
be 0 if θt < θ0 but nonzero if θt = θ0. However, since
limt→∞ λ/(λ+ 4(t+ 1)) = 0, we conclude that the lim-
iting fraction of t-TCPs out of all polyominoes vanishes
as t tends to ∞.

5 Conclusion

In this paper, we make a natural generalization of TCPs
to t-TCPs, generalized previous results on TCPs to t-
TCPs, and proved new results on TCPs in the more gen-
eral t-TCP case. To answer the minimum-area problem
for t-TCPs, we find that mt grows quadratically with t
(Theorem 1).

We also prove that for a fixed t, t-TCPs are not ex-
ponentially rare in the regular (those not necessarily
TC) polyominoes (Theorem 9). This begs the question,
exactly how common are t-TCPs in the regular poly-
ominoes? From the bound κt(φ) ≥ (A(n)/n6)(t+1)2 in
the proof of Theorem 9, we find that the widely believed
relation c0n

θ0λn ≤ A(n) (for some constants c0, θ0), to-
gether with the known relation A(n) ≤ λn, would imply

that κt(n)/A(n) = Ω
(
n(θ0−6)(t+1)2

)
. We also have an

asymptotic upper bound on κt(n)/A(n) in Theorem 12.
Our question in this regard is: For a fixed t, do t-TCPs
form an asymptotically positive fraction of all polyomi-
noes? Looking at the known values of κt(n)/A(n), it
seems plausible that it is indeed a positive fraction, but
the data are insufficient to make confident claims. In the
case that rigorous proof eludes, we may still gain insight
by measuring the prevalence of t-TCPs in Monte Carlo
samples of polyominoes, along the lines of reference [9].

We also notice that the definitions of minimality (not
minimum area), primitivity, and saturation given in ref-
erence [2] have clear t-fold generalizations, and ques-
tions 3–6 therein can be posed in the t-fold case too.
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