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Abstract tion [11,17,20], known as guarded guards (weakly coop-

We study a version of the polygon guarding problem in
which we want to guard the polygon with a minimum
number of vertex guards with 180° field of view such
that for each guard g there is a guard g’ where g and g’
are mutually visible. Let g(n) be the minimum number
of such guards over all polygons of size n. We show
that 222 < g(n) < 22. We define g(n) analogously for
orthogonal polygons, and show that 3”7’4 < g(n) < 5.
The lower bounds are existential in the sense that there
are polygons that need these many guards.

1 Introduction

The classic art gallery problem, posed by Victor Klee
in 1973 [8], asks for “the minimum number of guards
required to monitor every point within an art gallery
with n walls”. In this problem, each guard is consid-
ered to be a point g in the polygon (including bound-
ary) that can see any point p, where the segment gp lies
inside the polygon. In 1975, Chvétal [5] showed that
| 5] guards are always sufficient and sometimes neces-
sary to cover a polygon with n vertices. Chvatal’s proof
is by induction on a triangulation graph of the poly-
gon. In 1978, Fisk [6] provided a shorter proof using
a 3-coloring of the triangulation graph. The initial ap-
pearance of other variations of the art gallery problem
followed these foundational results, including scenarios
with mobile guards [14], guards with limited visibil-
ity [3,18,19] or mobility [1,4], and guarding orthogonal
polygons [9,13]. For more related results, we refer the
interested readers to the book by O’rourke [15].

One of the variations of the art gallery problem is
the concept of cooperative guards [10], which is also
known as connected guards [17]. The goal of this prob-
lem is to find the minimum number of guards such that
their visibility graph is connected. In another varia-
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erative guards, or watched guards), the goal is to find
the minimum number of guards such that each guard is
visible from some other guard. For example, in Fig-
ure 1(a) three guards are sufficient for guarding the
polygon, while in Figure 1(b), the guards must guard
each other mutually, resulting in a total number of 4
guards, each of which is being guarded by at least one
other guard. The main motivation of these variations is
that if something goes wrong with one guard, at least
one other guard can be notified.

Figure 1: A difference between (a) classic guards, and
(b) guarded guards.

The guarded guards problem was introduced by Liaw
et. al. [11] in 1994, where they presented an optimal
linear-time algorithm for 1-spiral polygons.! In 1995,
Hernandez [16] proved an upper bound of | %] for or-
thogonal polygons. In 2002, Zylinski [20, 21] provided
tight bounds of L%"j for monotone and spiral polygons,
and L?’"%J for star-shaped polygons. In the same year,
independently, Michael and Pinciu [17] showed that
L%J guards for simple polygons are always sufficient
and sometimes necessary. They also provided a shorter
proof on the upper bound of orthogonal polygons. Re-
garding computational complexity, Liaw et. al. proved
that the guarded guards problem is A'P-hard [11].

In the above problems the guards are assumed to have
360° field of view. In recent years, there has been an
increased interest in guards with bounded field of view
that only see an angle a@ < 360° [3,18,19]. For 360°
field of view, if a guard g, sees g, then go also sees g1,
which means that they are mutually visible. However,
this property does not hold for o < 360°. Florentino et
al. [7] studied a version of the connected guard problem
with @ = 180°, where the mutual visibility graph must
be connected.

LA polygon is 1-spiral if its boundary has exactly one chain of
reflex vertices.
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1.1 Preliminaries

A triangulation of a polygon P refers to the division
of P into a set of triangles, which are non-overlapping
and cover the entire area of the polygon. The corners of
triangles are at vertices of P. The dual graph of a tri-
angulation is constructed by defining a vertex for each
triangle in the triangulation; edges are drawn between
vertices if the corresponding triangles share a common
edge [15]. The dual of triangulation is a tree with ver-
tices of degree < 3.

An orthogonal polygon is defined as a polygon whose
edges meet at right angles, resulting in edges that are
either horizontal or vertical. An orthogonal polygon
admits a convex quadrangulation which is a partitioning
of the polygon into convex quadrilaterals [9]. The dual
of convex quadrangulation is derived analogously to the
dual of triangulation. The dual of quadrangulation is a
tree with exactly 252 vertices of degree < 4 [15].

1.2 Our Contributions

We study the guarded guards problem with guards of
180° field of view. In this problem, we are given a simple
polygon P with n vertices. The goal is to place the
minimum number of guards with 180° field of view at
vertices of P to cover the entire polygon P, such that
for each guard g, there is a guard ¢’ such that g and ¢’
see each other, in other words, g and ¢’ are mutually
visible. In this problem:

1. The guards must be placed at the vertices.
2. Each guard has 180° field of view.

3. Each guard must be mutually visible by some other
guard (Figure 2).

4. The guards cannot be placed outwards (i.e. towards
the exterior of the polygon as in Figure 11).

5. If two guards are placed at the same vertex, then
they cannot be mutually visible to each other.

“
(a) (b) () (d)

Figure 2: In (a), (b), (c¢) the guards cover the polygon
but do not see each other mutually. (d) is a valid
guarded guarding.

The assumption that, two guards placed at the same
vertex are not considered visible to each other, is to
avoid collusion among the guards.

Figure 3: The necessity of two guards on some vertex.

Table 1: Bounds for different variants of the problem.

Polygon | Field of View Bound
Simple 360° |22 ] [12,20]

Orthogonal 360° | 5] [12,16]
Simple 180° [22=2,22] (Thm. 2)

Orthogonal 180° [%2, 2] (Thm. 9)

We define g(n) to be the minimum number such that
any polygon with n vertices can be guarded by at most
g(n) such guards. We define g(n) analogously for or-
thogonal polygons, where the edges are axis-aligned.

Placement of two guards at one vertex is sometimes
necessary. Figure 3 shows an arbitrary large polygon,
such that if we place one guard at each vertex there is
still a guard that is not mutually visible by any other
guard (vertex a in the figure).

In Section 2 we study simple polygons and prove that
2”3_2 < g(n) < %”. In Section 3 we study the orthog-
onal polygons and prove that 3"7_ 1 <gn) < 5. Ta-
ble 1 summarizes existing bounds for angle 360° and
our bounds for angle 180°. In the rest of the paper the
term “guard” refers to a guard of 180° field of view.

2 Simple Polygons

In this Section we prove that any n-vertex polygon can
be mutually guarded by at most 4?" guards. Moreover,
there are n-vertex polygons that require % guards.
Therefore, 222 < g(n) < 2. In section 2.1 we present
a lower bound example, and in section 2.2 we prove the
upper bound. Our proof is by induction. It cuts a small
portion of the polygon, guard it with a few mutually
visible guards, and apply induction on the rest of the
polygon. This is a standard technique used in many

visibility guarding problems [14,17].

2.1 The Lower Bound

For every m > 1 we construct a polygon P with n =
3m + 1 vertices that requires 2m guards, which implies
the lower bound. Our polygon is illustrated in Figure 4.
For any i < m, we identify a part in P that consists of
vertices a;, b;, ¢;, and a;41. In each part ¢, we consider
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two points p; and ¢; such that they are only visible from
the vertices of its corresponding part. Placing one guard
g; on either one of a;, b;, or a;41 is not sufficient for
guarding both p; and ¢;; if g; is placed on ¢;, then it
covers part ¢, but it is not covered by any other guard.
Thus, we need two guards in part ¢ to mutually guard p;
and ¢;. Since there are m such parts in P, and each part
requires two guards, polygon P requires a total amount

2(n—1) 2n—2

of 2m = == guards. Therefore, g(n) >

3 -

Figure 4: A polygon that requires at least % guards.

2.2 The Upper Bound

We prove that any n-vertex simple polygon P can be
mutually guarded by at most %” guards. Hence, g(n) <
%". Our proof is by induction on the number of vertices
of P. We cut a small part of P and guard it, and recur
on the remaining part of the polygon. We continue the
induction until the remaining polygon is one of our base
cases (n < 7).
The following lemma is implied from a result of [2]:

Lemma 1 Let P be a polygon with n > 8 wvertices.
There exists a diagonal d that divides P into two poly-
gons P’ and P" with m and n —m + 2 vertices, respec-
tively, for some m € {5,6,7}.

Observation 1 Let P be a polygon with n > 8 vertices.
If P can be partitioned into two polygons P’ and P" by a
diagonal, with n' > 3 and n” > 3 vertices, respectively,
then g(n) < g(n') + g(n”).

Theorem 2 For everyn > 3:

2 ifn=34,5
3 ifn=6
g(n) = )
4 ifn=7
8 ifn 28

Proof. The proof is by induction on n. The cases were
3 < n < 7 serve as base cases, and are proved later in
Section 2.2.1.

Figure 5: Guarding of P;.

We proceed the induction step for n > 8. By Lemma
1, there exists a diagonal that partitions P into two
polygons P’ and P” of sizes m and n — m + 2, re-
spectively, such that m € {5,6,7}. By Observation 1,
g(n) < g(n —m + 2) + g(m). Substituting the possi-
ble values of m into the formula confirms the induction
step, as shown below:

o) < gln—3) +9(5) < o 1o < T
g(n)ﬁg<n—4)+g<6)s@+3s4§,
o(n) < gt —5) +g(n < D 4T

2.2.1 Base Cases

The base cases happen when n < 8. For n = 3, we need
exactly two mutual guards to guard the entire polygon.
As every polygon with n = 3 vertices is convex, one
guard is sufficient to guard the entire area of the poly-
gon. We require another guard to guard the first guard,
resulting in a total of 2 guards. In Lemmas 3, 4, 5, and
6 we show the base cases where n = 4, n = 5, n = 6,
and n = 7, respectively. Note that in the proofs, the
term P, presents a polygon with n vertices.

Since the sum of a quadrilateral’s internal angles is
360°, the following observation holds:

Observation 2 Let QQ be a quadrilateral. Among each
pair of opposite angles in Q, at least one is convex.

Lemma 3 g(4) = 2.

Proof. Let P, be a polygon of size 4, triangulated by
adding a diagonal ab, as shown in Figure 5. By Obser-
vation 2, at least one of the vertices a or b is convex.
Putting a guard g on the convex vertex is sufficient to
guard Py, as it covers both of the triangular faces. To
ensure mutual visibility, we put another guard ¢’ on a
vertex that is visible from g. Therefore, g(4) =2. O

Let X and Y be two interior disjoint triangles in the
plane that share a side. We refer to the union of X and
Y, which is a quadrilateral, by XY . Additionally, the
shared side of X and Y is a diagonal in XY. In what
follows, we refer to this as ‘the diagonal” of XY

Lemma 4 ¢(5) = 2.
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(a) b is convex (b) b is reflex

Figure 6: Two cases for guarding Ps.

Proof. Let Ps be a polygon of size 5. P can have at
most two reflex vertices, as the sum of the internal an-
gles cannot exceed 540°. We triangulate P5 by adding
two non-intersecting diagonals and observe that its dual
tree is a path of three nodes. Let B be the triangle corre-
sponding to the middle node of the path, while triangles
A and C correspond to its adjacent nodes, as shown in
Figure 6. Let a, b, and ¢ be the vertices of triangle B,
such that b is shared between the two diagonals, a is
shared between A and B, and c is shared between B
and C. We have two cases:

e b is a convex vertex of Ps: We place a guard on b
to cover the entire polygon, and another guard on
another vertex to mutually see b, as in Figure 6(a).

e b is a reflex vertex of Ps: Then, one of a and ¢
is convex. Without loss of generality, let ¢ be the
convex vertex. We place a guard on c. Let a be the
portion of the angle of vertex b that lies in quadri-
lateral AB, as presented in Figure 6(b). By Obser-
vation 2, either « or the angle at vertex a is convex.
We put one guard to cover this convex angle. This
guard and c are mutually visible. g

A proof of the following lemma is given in the full
version of the paper.

Lemma 5 ¢(6) = 3.
Lemma 6 ¢(7) = 4.

Proof. This statement is verified as there is a diagonal
in every 7-gon that splits the polygon into a pentagon
and a quadrilateral. By Lemmas 3 and 4, any quadri-
lateral and any pentagon can be guarded by 2 guards.
Therefore, we divide the 7-gon into a pentagon and a
quadrilateral, and we guard each with 2 guards sepa-
rately, resulting in a total number of 4 guards. O

3 Orthogonal Polygons

In this section, we study the guarded guard problem for
orthogonal polygons. In Section 3.1 we uncover some

properties of orthogonal polygons. We will use these
properties in our proof of the § upper bound in Section
3.2. In the full version of the paper, we present our lower
bound by exhibiting a family of polygons that require

% guards for an arbitrary large n.

3.1 Preliminaries

We prove some properties of quadrangulated orthogonal
polygons that will be used later in Section 3.2. However,
these properties are of independent interest.

Observation 3 Any simple polygon that admits a
quadrangulation has an even number of vertices.

Lemma 7 Let P be an orthogonal polygon and Q be a
quadrangulation of P. Any diagonal d of Q partitions P
into two quadrangulated polygons Py and P> such that
in each of P1 and Py the edges that are adjacent to d
are parallel to each other.

Proof. Due to symmetry, we prove the statement only
for P;. Since P is orthogonal, its edges alternate be-
tween horizontal and vertical. Consequently, all edges
of P except d are orthogonal. The polygon P; admits
a quadrangulation, which is inherited from . Thus,
by observation 3, it has an even number of vertices and
edges. Therefore, the two edges that are incident to
d are either horizontal or vertical, and thus parallel to
each other. O

The following observation is implied from Lemma 7.

Observation 4 Let P be an orthogonal polygon and Q
be a quadrangulation of P. Then every diagonal of Q is
incident to at least one reflex vertex of P.

Lemma 8 Let d = (a,b) be any diagonal in @Q that
divides P into two polygons Py and P,. Let aq, 1 be
the angles of Py at a and b, respectively, and let as, B
be the angles of Py at a and b, respectively. Then the
following statements hold:

1. min{ay,B1} < 7 and min{ag, B2} < 7

2. a1+ 1 =7 oras+ By =

Proof. By Observation 4 one endpoint of d, say b, is a
reflex vertex. We consider two cases:

1. ais a convex verter. In this case the angle at a is §;
see Figure 7(a). Statement 1 holds because a; and
ag are both smaller than 7. To verify statement 2,
observe that the two edges of P; that are incident
to d are on the same side of the line through d.
This and the fact that these edges are parallel (by
Lemma 7) imply that a; +5; = 7. We get as+ 82 =
7 by a similar argument.
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Figure 7: Possible configurations of a diagonal
d = (a,b) of P in Q.

2. a is a reflex vertex. In this case the two edges of,
say P,, that are incident to d are on the same side
of the line through d, and the corresponding two
edges in P; are on opposite sides of the line. See
Figure 7(b). Therefore as + B2 = m—this proves
statement 2 and the second part of statement 1.
It remains to show that min{a;,51} < w. This
statement is also true because a + 1 = 27 as the
two edges of P;, incident to d, lie on different sides
of the line through d. O

3.2 The Upper Bound

In this section, we prove that any n-vertex orthogo-
nal polygon P can be mutually guarded by at most 3
guards. Hence, g(n) < 5. Note that n must be an even
number, as P is orthogonal.

Theorem 9 g(n) < 3, for every even n > 4.

Proof. Let P be an orthogonal polygon, QQ be a quad-
rangulation of P, and T be the dual tree of Q). Note
that T has "7*2 vertices of degree at most 4. We root
T by taking an arbitrary leaf as the root. Thus, each

node has at most 3 children (See Figure 8).

| a

b
AN

e

f

Figure 8: A quadrangulation and its dual tree.

Our proof is by partitioning 7" into connected subtrees
with at least 2 and at most 4 nodes, and possibly one
subtree of size 1. We partition T' as follows:

Let [ be a deepest leaf in T', i.e. a node with maximum
distance from the root, and p be the parent of [. Let

T(p) be the subtree of T rooted at p, and note that
2 < |T(p)| < 4 (assuming T has at least two nodes).
We remove the vertices of T'(p) from T and repeat the
above process. In the last iteration, the tree T may
contain only one vertex which is the root, and we take
it as a subtree with one node.

Consider any subtree T'(p) obtained after the above
partitioning of T'. Let polygon P be the union of quadri-
laterals in @ corresponding to the nodes of T'(p). We
guard P for each subtree separately. This would give
a guarding of P. Assuming 2 < |T(p)| < 4, we have
|P| € {6,8,10}, as the number of vertices of P is given
by [P| = 2/T(p)| + 2.

In Lemmas 11, 12, and 13 we will show how to guard
the corresponding polygon P of a subtree T(p) with
|T(p)| guards. In case T'(p) is a 1-node tree, we guard
P with 2 guards. This would give a total of |T'| 4+ 1

guards, which is 252 +1 = 2. 0

Observe that if |T'(p)| = 1, then |P| = 4, in which
case P can be guarded by 2 guards. In Lemmas 11,
12, and 13 we show how to guard a polygon P for a
subtree T'(p), where |T(p)| € {2,3,4} and consequently
|P| € {6,8,10}. In Figure 9, all possible configurations
of T'(p) alongside a sample representation of its corre-
sponding P are shown. Throughout the proofs, we use
‘P to represent the union of the quadrilaterals that cor-
respond to nodes of T'(p). We use |P| to denote the
number of vertices of P.

Figure 9: Possible polygonal patterns for T'(p).

Notice that the angles «; and §; in Lemma 8 are de-
fined by the diagonals of @ and the boundary of P (not
necessarily orthogonal). Also, notice that P is a simple
polygon formed by some quadrilaterals in ). Therefore,
if we define o and 3] analogous to «; and §; but with
respect to the diagonals of ) and the boundary of P,
then o < «; and B] < B;. Therefore, the following
Corollary is valid.
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Corollary 10 Let P be a simple polygon formed by
some quadrilaterals in Q. Let d = (a,b) be any diag-
onal in Q that divides P into two polygons P1 and Ps.
Let oy, 8] be the angles of Py at a and b, respectively,
and let oy, B be the angles of Py at a and b, respectively.
Then the following statements hold:

1. min{a}, B1} < 7 and min{ay, B5} < 7

2. oy + By <7 orah+ By < T

While we only use the first statement in our proofs,
we keep the second statement due to its independent
interest and potential applications.

Lemma 11 Two guards are sufficient for every P
where |P| = 6.

Proof. A polygon P with 6 vertices consists of two
quadrilaterals of @, say A and B. Let a and b be the
shared vertices between A and B—ab is the shared di-
agonal. We place one guard on a to cover A and one
guard on b to cover B. Such a placement exists because
A and B are convex quadrilaterals. The two guards are
visible to each other as both cover the diagonal ab. [

Lemma 12 Three guards are sufficient for every P
where |P| = 8.

Proof. A polygon P with 8 vertices contains three
quadrilaterals of Q). Let A be the quadrilateral corre-
sponding to the child node I, B be the quadrilateral cor-
responding to the parent node p, and C' be the quadri-
lateral corresponding to the sibling of  in T'(p). We
consider two cases:

1. Quadrilaterals A and C share a vertex:

Let b be the vertex shared between A and C, and
let ab be the diagonal that separates A and B, and
let bc be the diagonal that separates B and C, as
in Figure 10(a). We place one guard on a to cover
A, and one guard on ¢ to cover C. As the quadri-
laterals are convex, both guards cover vertex b. We
place a third guard on b to cover B. Thus, the en-
tire P is guarded, and the guards on a and c are
mutually visible from the guard on b.

2. Quadrilaterals A and C has no common vertex:

Let ab; be the diagonal that separates A and B
and let cby be the diagonal that separates B and
C, such that ac corresponds to the edge of T that
connects p to its parent, as in Figure 10(b). By
statement 1 of Corollary 10, the angle at one of the
endpoints of ac in polygon P is at most m. Due
to symmetry, let a be this endpoint. By placing a
guard on a we cover both A and B. We place one
guard on by to cover C. We place a third guard on

c to cover B. The guards on a and c see each other
through ac, and the guards on ¢ and by see each
other through cby. Hence, P is mutually covered
by three guards. O

parent of p

. parent of p

Figure 10: A and C share (a) one vertex (b) no vertex.

A proof of the following lemma is given in the full
version of the paper.

Lemma 13 Four guards are sufficient for every P
where |P| = 10.

4 Open Problems

One natural problem is to improve any of the bounds
given for g(n) and g(n). We believe the true bounds are
closer to our lower bounds.

Another research direction is to relax any of the con-
straints that is imposed on a feasible guard set in Sec-
tion 1.2. For example one may allow outward guards,
because in some cases they lead to smaller number of
guards, as in Figure 11. Alternatively one may allow
the two guards that are placed at the same vertex to be
mutually visible to each other.

(a) (b)

Figure 11: Outward guarding can result in less guards
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