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The Number of Non-overlapping Unfoldings in Convex Polyhedra*
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Abstract

An unfolding of a polyhedron is a flat polygon obtained
by selecting candidate cutting lines, cutting along them,
and flattening the faces onto the plane. Several meth-
ods have been proposed to efficiently count the number
of unfoldings by treating the candidate cutting lines as
a graph. One such method is to use a zero-suppressed
binary decision diagram (ZDD), a compact data struc-
ture for representing families of sets. However, some
unfoldings overlap depending on the shape of the poly-
hedra and how they are unfolded. In such cases, two
distinct faces intersect or touch in the plane, making it
impossible to embed the unfolding in the plane. In this
study, we address the problem of counting the number
of non-overlapping edge unfoldings in convex polyhe-
dra. We propose a ZDD-based algorithm that excludes
overlapping unfoldings by removing their minimal over-
lapping patterns. Our method applies to both edge and
lattice unfoldings, and we present experimental results
on several convex polyhedra.

1 Introduction

An unfolding of a polyhedron is a flat polygon obtained
by selecting candidate cutting lines, cutting along them,
and flattening the faces onto the plane. Depending on
the shape of the polyhedron and how it is unfolded, the
resulting unfolding may have overlaps, i.e., two distinct
faces overlap, or their boundaries are in touch (see Fig-
ure 1). When the candidate cutting lines are restricted
to the edges of the polyhedron, the unfolding is called an
edge unfolding. Shephard proposed the following conjec-
ture about edge unfoldings.

Conjecture 1 ( [13]) For any convex polyhedron, at
least one non-overlapping edge unfolding exists.
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Figure 1: A cube with truncated corners and its over-
lapping unfolding [11].

Figure 2: Examples of overlapping lattice unfoldings for
(1, 2, 3)-cuboid. Faces A and K overlap.

This conjecture is still unsolved, and some studies
to solve it are ongoing. One such study is determin-
ing whether an overlapping edge unfolding exists for a
given polyhedron. This line of investigation is based
on the idea that one possible approach to a negative
resolution of Conjecture 1 is to find a convex polyhe-
dron for which every edge unfolding overlaps. Shiota
and Saitoh presented an algorithm called “rotational
unfolding” that can quickly find an overlapping edge
unfolding of a polyhedron [15]. This algorithm can de-
termine whether the edge unfolding of a polyhedron
overlaps. For convex regular-faced polyhedra (convex
polyhedra in which every face is a regular polygon), the
existence of overlapping edge unfoldings has been com-
pletely demonstrated [2, 4, 6, 7, 15].

General unfoldings, which allow cuts across the faces
and edges of a polyhedron, have been studied. Some
general unfoldings permit cuts only along specific can-
didate lines drawn on the faces. One such example is
the lattice unfolding of a cuboid formed by connect-
ing multiple (1, 1, 1)-cubes [10]. In lattice unfolding,
we cut along the edges of the lattice formed by unit
squares. For lattice unfoldings of cuboids, the existence
of overlapping unfoldings has also been fully demon-
strated [10,14] (see Figure 2 for an example).

The problem of counting the number of unfoldings has
been studied in previous works. Schevon experimentally
showed that, for randomly generated convex polyhedra,
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Figure 3: Shevon’s experiment on randomly generated
convex polyhedra. Each point shows the average per-
centage of non-overlapping edge unfoldings, computed
from 1,000 random unfoldings for each of 5 polyhedra.

the percentage of non-overlapping edge unfoldings de-
creases as the number of vertices increases [12] (see Fig-
ure 3).

The number of unfoldings (including those with over-
laps) is equal to the number of cutting trees (trees
satisfying specific conditions on the candidate cutting
lines) [3, 10]. Horiyama et al. counted the number of
cutting trees using zero-suppressed binary decision dia-
grams (ZDDs), a compact data structure for represent-
ing families of sets [5, 7].

Our contributions. Herein, we propose an algorithm
for counting the number of non-overlapping unfoldings
of a given polyhedron using ZDDs and operations over
them. The algorithm first enumerates theminimal over-
lapping partial unfoldings (MOPUs), which are minimal
units of unfoldings obtained through the rotational un-
folding [15] (the gray faces in Figure 1 correspond to
this). Then, we construct a ZDD representing non-
overlapping unfoldings by removing the unfoldings con-
taining MOPUs from the ZDD of all possible unfoldings.
In this paper, we apply the proposed algorithm to edge
unfoldings of convex regular-faced polyhedra and lat-
tice unfoldings of cuboids, and we present the number
and percentage of non-overlapping unfoldings for each
convex polyhedron (see Tables 1 and 2 for selected re-
sults). These results suggest that the number of non-
overlapping unfoldings is more significantly affected by
the number of faces comprising each MOPU than by the
number of MOPUs themselves.

2 Preliminaries

2.1 Edge unfolding of polyhedra

Let Q be a polyhedron. An unfolding of the polyhedron
Q is a flat polygon formed by cutting Q’s edges or faces

(a) (b)

Figure 4: (a) Definition of the edge length L of a cube.
(b) An (

√
10, 2

√
10, 3

√
10)-cuboid.

and unfolding it into a plane. An edge unfolding of Q
is an unfolding formed by cutting only edges. Q can be
viewed as a graph GQ = (VQ, EQ), where VQ is a set of
vertices and EQ is a set of edges. We have the following
lemma for an edge unfolding of Q.

Lemma 1 ( [3] Lemma 22.1.1) The cutting lines of
an edge unfolding for Q form a spanning tree of GQ.

We say that two distinct polygons overlap if there ex-
ists a point p contained in both of the polygons. Note
that any point on a boundary is included in the poly-
gons in this paper. An unfolding is overlapping if there
exists a pair of distinct faces such that the faces over-
lap. Rotational unfolding is an efficient algorithm for
determining whether a given polyhedron Q has an over-
lapping edge unfolding [15].

2.2 Lattice unfolding of cuboids

Let us consider a square lattice where each square has
an area of 1×1. Let A = (a, 0) and B = (0, b) be lattice
points, where a ∈ N+, b ∈ N, and a ≥ b, as illustrated in
Figure 4 (a). We define L =

√
a2 + b2 as the length of

the segment AB. An (xL, yL, zL)-cuboid is then defined
as a box whose edge lengths are xL, yL, and zL along
the x-, y-, and z-axes, respectively, where x, y, z ∈ Z+.
Figure 4 (b) shows an example of a lattice cuboid. Here,
a square enclosed by a solid line corresponds to one unit
of the original square grid, and a square enclosed by a
dotted line has a side length of L.

A lattice unfolding of a cuboid C is a planar shape
obtained by cutting along the edges of unit squares on
the faces of the cuboid. C can be viewed as a graph
GC = (VC , EC), where VC is the set of lattice points
(i.e., integer-coordinate points) on the surface of C, and
EC is the set of edges between them. We have the fol-
lowing lemma for a lattice unfolding of C.

Lemma 2 (Figure 5, and [10] Theorems 1 and 3)
Let S(VC) ⊆ VC be the set of lattice points located at
the vertices of C. Then, the following are equivalent
for a subgraph GL ⊆ GC :

(1) A lattice unfolding can be obtained by cutting along
GL.

(2) GL is a tree that satisfies S(VC) ⊆ GL, and for any
vertex v in GL, if the degree of vertex v is 1, then
v ∈ S(VC).
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Table 1: The number and percentage of non-overlapping edge unfoldings for convex regular-faced polyhedra (excerpt).
Archimedean solids |V | |E| |F | #(MOPUs) #(Edge unfoldings) #(Non-overlapping edge unfoldings) Pct.(%)

Truncated dodecahedron 60 90 32 120 4,982,259,375,000,000,000 1,173,681,002,295,455,040 23.56
Truncated icosahedron 60 90 32 240 375,291,866,372,898,816,000 371,723,160,733,469,233,260 99.05

Archimedean n-prisms |V | |E| |F | #(MOPUs) #(Edge unfoldings) #(Non-overlapping edge unfoldings) Pct.(%)

27-prism 54 81 29 216 37,403,957,244,654,675 35,348,297,730,550,335 94.50
28-prism 56 84 30 336 144,763,597,316,784,768 136,369,030,045,792,768 94.20
29-prism 58 87 31 580 559,560,282,425,278,229 377,763,966,359,384,333 67.51
30-prism 60 90 32 720 2,160,318,004,043,512,500 1,457,228,998,699,944,660 67.45

Archimedean m-antiprisms |V | |E| |F | #(MOPUs) #(Edge unfoldings) #(Non-overlapping edge unfoldings) Pct.(%)

16-antiprism 32 64 34 64 151,840,963,183,392 146,378,600,602,880 96.40
17-antiprism 34 68 36 204 1,105,779,284,582,146 989,008,190,008,480 89.44
18-antiprism 36 72 38 432 8,024,954,790,380,544 1,517,682,139,108,200 18.91
19-antiprism 38 76 40 456 58,059,628,319,357,318 10,550,126,657,845,736 18.17

Table 2: The number and percentage of non-overlapping lattice unfoldings for cuboids (excerpt).
Faces-in-touch Edges-in-touch Vertices-in-touch

Cuboids |V | |E| |F | #

(
Lattice

unfoldings

)
#(MOPUs) #

(
No(faces)
unfoldings

)
Pct.(%) #(MOPUs) #

(
No(edges)
unfoldings

)
Pct.(%) #(MOPUs) #

(
No(vertices)
unfoldings

)
Pct.(%)

(1, 1, 1) 8 12 6 384 0 384 100.00 0 384 100.00 0 384 100.00
(1, 1, 2) 12 20 10 12,124 0 12,124 100.00 0 12,124 100.00 32 11,484 94.72
(1, 1, 3) 16 28 14 240,304 16 240,240 99.97 80 238,432 99.22 304 212,920 88.60
(1, 1, 4) 20 36 18 3,708,380 80 3,705,820 99.93 512 3,644,600 98.28 1,232 3,075,400 82.93
(1, 1, 5) 24 44 22 49,206,176 208 49,156,592 99.90 1,504 47,970,720 97.49 3,408 38,043,936 77.32
(1, 1, 6) 28 52 26 592,188,796 464 591,487,340 99.88 3,808 573,122,568 96.78 8,448 424,509,028 71.68
(1, 1, 7) 32 60 30 6,671,469,328 1,104 6,663,017,440 99.87 9,360 6,409,933,496 96.08 20,432 4,407,661,888 66.07
(1, 1, 8) 36 68 34 71,772,242,780 2,704 71,679,140,716 99.87 22,912 68,429,543,676 95.34 49,456 43,445,829,708 60.53
(1, 1, 9) 40 76 38 747,116,459,968 6,544 746,143,953,328 99.87 55,584 706,395,487,984 94.55 119,504 412,096,369,696 55.16
(1, 1, 10) 44 74 42 7,593,452,118,844 15,760 7,583,621,450,924 99.87 134,368 7,114,772,651,372 93.70 288,416 3,797,487,539,408 50.01

(1, 2, 2) 18 32 16 1,675,184 0 1,675,184 100.00 32 1,553,536 92.74 128 1,228,824 73.35
(1, 2, 3) 24 44 22 131,478,632 544 130,212,292 99.04 1,648 111,177,796 84.56 3,312 75,653,292 57.54
(1, 2, 4) 30 56 28 7,692,072,382 14,920 7,528,985,598 97.88 32,048 5,970,306,978 77.62 52,960 3,535,269,930 45.96
(1, 2, 5) 36 68 34 375,631,947,892 141,816 364,028,460,124 96.91 291,736 270,654,176,916 72.05 449,552 140,837,624,986 37.49

(2, 2, 3) 34 64 32 203,758,066,112 5,824 196,470,177,268 96.42 19,392 109,840,848,592 53.91 34,704 48,990,450,676 24.04

(
√
2, 2

√
2, 2

√
2) 34 64 32 207,761,826,744 13,296 198,307,283,288 95.45 45,776 135,619,116,108 65.28 76,432 67,737,527,156 32.60

Figure 5: An example of a cutting line in a (2, 3, 3)-
cuboid. The cutting line forms a tree that includes all
eight lattice cuboid vertices (the starred ones).

In a lattice unfolding, the original cuboid’s unit
squares are arranged on a plane, with their edges con-
nected. The relationship between any pair of unit
squares that are not adjacent on the original cuboid is
classified as follows [14]:

(1) Overlap in the same position (Figure 2).

(2) Share one edge (Figure 6 (a)).

(3) Share one vertex (Figure 6 (b)).

(4) Do not share any edges or vertices.

Herein, we say that a lattice unfolding is faces-in-touch,
edges-in-touch, or vertices-in-touch if it has a pair of
unit squares satisfying condition (1), (2), or (3), respec-
tively. If any of the conditions (1)-(3) is satisfied, we say

(a) Edges-in-touch unfolding in the (1, 2, 3)-cuboid

(b) Vertices-in-touch unfolding in the (1, 2, 2)-cuboid

Figure 6: Overlapping lattice unfolding [10, 14]. In the
cuboids shown in (a) and (b), the red edges and the
starred vertices, respectively, are not in touch.

the lattice unfolding is overlapping. Otherwise, when
all pairs of unit squares that are not adjacent on the
original cuboid satisfy condition (4), we say the lattice
unfolding is non-overlapping. Note that for any cuboid,
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Figure 7: (a) The graph C4 and its spanning trees. (b)
A ZDD representing the spanning trees of C4.

the following strict inclusion relations hold among the
families of unfoldings: Uf ⊂ Ue ⊂ Uv, where Uf , Ue,
and Uv denote the sets of unfoldings with face-in-touch,
edge-in-touch, and vertex-in-touch, respectively.

2.3 Counting the number of unfoldings

From Lemmas 1 and 2, the number of unfoldings (in-
cluding those with overlaps) is equal to the number of
trees satisfying specific conditions on the candidate cut-
ting lines (hereafter called cutting trees). One method
for counting cutting trees is using a Zero-suppressed De-
cision Diagram (ZDD) [5]. A ZDD is a data structure
that compactly represents a family of sets as a directed
acyclic graph [9] (see the example in Figure 7). It con-
sists of two types of nodes: terminal nodes with out-
degree zero (⊤, ⊥), and branching nodes labeled by el-
ements of the set. Each branching node has two outgo-
ing edges: a 1-edge, which indicates the inclusion of the
labeled element, and a 0-edge, which indicates its exclu-
sion. A ZDD has a unique root node with no incoming
edges, and each path from the root to ⊤ corresponds to
a specific set.

3 Counting algorithm for the number of non-
overlapping unfoldings

In this section, we present an algorithm for count-
ing non-overlapping unfoldings. Section 3.1 introduces
the notion of minimal overlapping partial unfoldings
(MOPU), which serve as the basis for our algorithm.
In Section 3.2, we present a ZDD-based algorithm for
counting only non-overlapping unfoldings.

3.1 Minimal overlapping partial unfoldings

We begin by introducing several notions used to de-
fine minimal overlapping partial unfoldings. Let Q be
a polyhedron. Two faces in Q are adjacent if they are
connected through a common cutting line. The dual
graph of Q is a graph GD = (VD, ED), where each ver-
tex in VD corresponds to a face of Q, and two vertices
are connected by an edge in ED if and only if the cor-
responding faces are adjacent. A partial unfolding is a
flat polygon consisting of a set of faces that correspond

Figure 8: Examples of MOPUs in a convex regular-faced
polyhedron (J21). The gray faces indicate the end faces.

to a connected induced subgraph of GD. A minimal
partial unfolding is a partial unfolding consisting of the
faces along a simple path between two vertices in GD.
A minimal overlapping partial unfolding (MOPU) is a
minimal partial unfolding in which the two end faces
overlap. Figure 8 shows examples of MOPUs in edge
unfoldings. In each case, the two end faces overlap,
and removing any face would break the connectivity of
the unfolding, which makes them minimal. The partial
unfoldings consisting of the lettered faces in Figures 2
and 6 are also examples of MOPUs in lattice unfold-
ings. MOPUs in convex regular-faced polyhedra and
lattice cuboids can be enumerated using the rotational
unfolding [14,15].

3.2 ZDD-based algorithm

In this section, we describe an algorithm for counting
the number of non-overlapping unfoldings of a given
polyhedron. As described in Section 2.3, the number
of cutting trees can be counted by constructing a ZDD
ZT . However, some cutting trees result in overlapping
unfoldings, depending on the shape of the polyhedron.
In such cases, ZT includes these overlapping unfoldings.
To efficiently remove overlapping unfoldings from ZT ,
we use subsetting, a ZDD operation [8]. The subsetting
technique constructs a new ZDD ZN by extracting the
family of sets that satisfy the constraint C from ZDD Z.

We now present a method for removing overlapping
unfoldings by subsetting. Let U be a partial unfold-
ing, and let NC[U ] be the set of edges that are not
cut when unfolding the polyhedron. We denote by k
the number of MOPUs, enumerated by the rotational
unfolding. The following lemma holds for any MOPU
Mi (1 ≤ i ≤ k).

Lemma 3 If an unfolding U satisfies NC[Mi] ⊆
NC[U ], then U is an overlapping unfolding.

Proof. Let the sequence of faces in MOPU Mi be
⟨f1, f2, . . . , fℓ⟩, and let ej be the edge shared between
each pair of adjacent faces fj and fj+1 (where the faces
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f1 and fℓ overlap). Since NC[Mi] represents the set of
uncut edges in the partial unfolding Mi, we can write
NC[Mi] = {e1, e2, . . . , eℓ−1}. On the other hand, from
the condition NC[Mi] ⊆ NC[U ], it follows that the set
{e1, e2, . . . , eℓ−1} must be included in the unfolding U .
Therefore, the sequence of faces ⟨f1, f2, . . . , fℓ⟩ appears
in U , indicating that U has overlaps. □

From Lemma 3, removing the family of sets Ui (which
represents unfoldings containing the MOPU Mi) from
the ZDD ZT yields a ZDD that represents only unfold-
ings that do not include the structure of Mi. On the
other hand, to construct the family of sets Ui represent-
ing unfoldings that include MOPU Mi, we need a ZDD
representing the family of cutting trees that contain
NC[Mi]. However, by applying the following lemma, we
can avoid constructing a ZDD representing all cutting
trees containing NC[Mi], and instead create a simpler
ZDD.

Lemma 4 Given the family of sets ZT representing all
unfoldings, the following conditions are equivalent:

(1) The family of sets obtained by removing the unfold-
ings that include MOPU Mi from ZT .

(2) The family of sets obtained by removing the fam-
ily Fi = {NC[Mi] ∪ E′ | E′ ⊆ E \NC[Mi]}, which
contains all subsets that include NC[Mi], from ZT .

Proof. From the condition, we know that Ui ⊆ Fi.
Now, if we define Ni = Fi \Ui, then Ni contains no sets
that represent unfoldings, meaning Ni ̸⊆ ZT . There-
fore, we have the following equivalence:

ZT \ Fi = ZT \ (Ni ∪ Ui) = ZT \ Ui,

which completes the proof. □

Note that the removal procedure based on Lemma 4
is order-independent: if an unfolding contains the un-
cut edge set of any MOPU Mi, it will be excluded at
that step, regardless of whether it also contains other
NC[Mj ]. Therefore, the resulting ZDD correctly retains
only non-overlapping unfoldings.
Therefore, we can construct a ZDD that represents

non-overlapping unfoldings by following three steps:

Step 1. Enumerate MOPUs using rotational unfold-
ing [14,15].

Step 2. Construct the ZDD ZT that represents all pos-
sible unfoldings, and for each i (1 ≤ i ≤ k), con-
struct a ZDD Fi representing the family of all sets
that do not simultaneously contain all elements of
NC[Mi].

Step 3. Apply the subsetting technique [8] on ZT using
the constraints from each Fi, to construct a ZDD
ZN that excludes MOPUs M1 through Mk.

Figure 9: The percentage of non-overlapping edge un-
foldings in Archimedean prisms.

4 Computational experiments

Here, we present the results of applying the algorithm
for counting non-overlapping unfoldings to the edge un-
foldings of 175 convex regular-faced polyhedra and the
lattice unfoldings of 23 cuboids. We used the TdZdd
library1 to construct the ZDD ZT , which represents all
unfoldings, the ZDD Fi, which represents the family of
sets containing all elements of NC[Mi], and applied the
subsetting method. To enumerate MOPUs for the con-
vex regular-faced polyhedra and lattice cuboids, we used
rotational unfolding2 [14,15]. All computational exper-
iments were conducted on an Intel(R) Xeon(R) CPU
E5-2643 v4 at 3.40 GHz with 512 GB of memory, run-
ning CentOS 7.93.

4.1 The number of non-overlapping edge unfoldings
for convex regular-faced polyhedra

As introduced in Section 1, Table 1 shows the number
and percentage of non-overlapping edge unfoldings for
selected convex regular-faced polyhedra4. Figures 9 and
10 show line plots of the percentage of non-overlapping
edge unfoldings for Archimedean prisms and antiprisms,
respectively. In each figure, the horizontal axis indi-
cates the number of sides n (or m) of the base poly-
gon, and the vertical axis shows the percentage of non-
overlapping edge unfoldings.

From the results of these experiments, we can find the
following. Let us compare the truncated icosahedron
and the truncated dodecahedron in Archimedean solids
(see Table 1, under Archimedean solids). Both polyhe-
dra have the same number of vertices, edges, and faces,

1https://github.com/kunisura/TdZdd
2https://shiotatakumi.github.io/MyPage/library/

RotationalUnfolding.html
3The source code and details on how it was tested can

be found at https://shiotatakumi.github.io/MyPage/library/
CountingNonoverlappingUnfoldings.html.

4The full version can be found in https://shiotatakumi.

github.io/MyPage/contents/250813-CCCG-2025.html#A

https://github.com/kunisura/TdZdd
https://shiotatakumi.github.io/MyPage/library/RotationalUnfolding.html
https://shiotatakumi.github.io/MyPage/library/RotationalUnfolding.html
https://shiotatakumi.github.io/MyPage/library/CountingNonoverlappingUnfoldings.html
https://shiotatakumi.github.io/MyPage/library/CountingNonoverlappingUnfoldings.html
https://shiotatakumi.github.io/MyPage/contents/250813-CCCG-2025.html#A
https://shiotatakumi.github.io/MyPage/contents/250813-CCCG-2025.html#A
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Figure 10: The percentage of non-overlapping edge un-
foldings in Archimedean antiprisms.

Figure 11: MOPUs in (a) Truncated icosahedron and
(b) Truncated dodecahedron, excluding rotational and
mirror equivalents [7, 15].

but the truncated icosahedron has more MOPUs than
the truncated dodecahedron. However, the truncated
dodecahedron has a lower percentage of non-overlapping
edge unfoldings. The MOPUs of the truncated icosa-
hedron consist of eight or nine faces (Figure 11 (a)),
whereas the truncated dodecahedron has a MOPU com-
posed of only four faces (Figure 11 (b)). Thus, we can
observe that the presence of MOPUs composed of fewer
faces has a greater influence on reducing the percentage
of non-overlapping edge unfoldings than the number of
MOPUs.

This trend is also observed in Archimedean n-gonal
prisms and m-gonal antiprisms. In both cases, the per-
centage of non-overlapping edge unfoldings significantly
decreases at n = 29 and m = 18, respectively, co-
inciding with the appearance of MOPUs composed of
fewer faces (see Figure 9 and 10; see also Table 1, under
Archimedean prisms and antiprisms). Figures 12 and
13 show how the structure of MOPUs changes around
the point where the percentage decreases.

4.2 The number of non-overlapping lattice unfold-
ings for cuboids

Table 2, which also appears in Section 1, shows the num-
ber and percentage of non-overlapping lattice unfold-

Figure 12: MOPUs in Archimedean prisms: (a)-(c) for
28-gonal and (a)-(e) for 29-gonal prisms, excluding ro-
tational and mirror equivalents [15]. (a)-(c) consist of 6,
7, and 8 faces, respectively, and (d) and (e) each consist
of 5 faces.

Figure 13: MOPUs in Archimedean antiprisms: (a)-(c)
for 17-gonal and (a)-(f) for 18-gonal antiprisms, exclud-
ing rotational and mirror equivalents [15]. (a)-(c) each
consist of 8 faces, and (d)-(f) each consist of 6 faces.

ings in selected (xL, yL, zL)-cuboids that do not have
faces-in-touch, edges-in-touch, or vertices-in-touch, re-
spectively5. In what follows, we use “No(xx)” to denote
a lattice unfolding that does not have any xx-in-touch.

From the results for (1, 1, z)-cuboids (1 ≤ z ≤ 10),
we observe that the percentage of non-overlapping lat-
tice unfoldings tends to decrease as z increases. Similar
trends are also observed in other results.

Among lattice cuboids, there exist cuboids that have
the same surface area but different volumes. Tables 3
and Table 4 show the percentages of lattice unfold-
ings without face-, edge-, or vertex-in-touch for cuboids
with a surface area of 32 and 34, respectively. These
tables indicate that the percentages of No(edges) and
No(vertices) unfoldings tend to decrease as the volume
increases. However, despite the increasing volume, the
percentage of No(faces) unfoldings decreases by approx-
imately 1% at surface area 32, but increases by about
3% at 34. Thus, while a larger volume tends to lower the
percentage of non-overlapping lattice unfoldings, vol-
ume alone does not fully explain the trend6.

5The full version can be found in https://shiotatakumi.

github.io/MyPage/contents/250813-CCCG-2025.html#B
6Similar trends are also observed for cuboids with other surface

areas; see https://shiotatakumi.github.io/MyPage/contents/

250813-CCCG-2025.html#C

https://shiotatakumi.github.io/MyPage/contents/250813-CCCG-2025.html#B
https://shiotatakumi.github.io/MyPage/contents/250813-CCCG-2025.html#B
https://shiotatakumi.github.io/MyPage/contents/250813-CCCG-2025.html#C
https://shiotatakumi.github.io/MyPage/contents/250813-CCCG-2025.html#C
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Table 3: The percentage of non-overlapping lattice un-
foldings for a cuboid with a surface area of 32.

Cuboids Volume No(faces) No(edges) No(vertices)

(
√
2, 2

√
2, 2

√
2) 8

√
2 95.45 65.28 32.60

(2, 2, 3) 12 96.42 53.91 24.04

Table 4: The percentage of non-overlapping lattice un-
foldings for a cuboid with a surface area of 34.

Cuboids Volume No(faces) No(edges) No(vertices)
(1, 1, 8) 8 99.87 95.34 60.53
(1, 2, 5) 10 96.91 72.05 37.49

5 Conclusion

In this paper, we proposed an algorithm to count the
number of non-overlapping unfoldings using ZDDs and
MOPU-based operations. We applied the algorithm to
two types of unfoldings and obtained insights into the
structural conditions under which the number of non-
overlapping unfoldings decreases.

There are four main directions for future work. The
first is to investigate the underlying reason for the obser-
vation in Section 4.2, where the percentage of No(faces)
unfoldings does not decrease monotonically with in-
creasing volume for cuboids with the same surface area.
The second is to apply the proposed method to other
classes of general unfoldings, such as pseudo-edge un-
foldings [1]. The third is to investigate whether the
proposed method can be extended to enumerate non-
overlapping unfoldings of non-convex polyhedra. Since
the method treats a polyhedron as a graph and does
not depend on its geometric shape, it is expected to
naturally generalize to non-convex cases. In this type
of unfolding, the vertices correspond to the original ver-
tices of the polyhedron, the edges are shortest geodesic
paths between vertex pairs, and the surface is unfolded
by cutting along these paths. The fourth is to pursue
a theoretical analysis of the computational complexity
of the proposed method. However, since the follow-
ing problem remains open, providing a formal runtime
bound is difficult:

Open problem 5 Is it computationally hard to decide
whether a given unfolding has overlaps?

Addressing this problem would naturally precede any
formal analysis of the method. These directions may
provide new insights toward resolving Conjecture 1.
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