
147 CCCG 2025, Toronto, Canada, August 13–15, 2025

Fast Approximate Lipschitz Extensions in Doubling Metrics

Donald R. Sheehy*

Abstract

We give an efficient algorithm for computing Lipschitz
extensions in doubling metrics. After O(n logn) prepro-
cessing time for sets A and B of size n, any t-Lipschitz
function on A can be extended to B in O(n) time. The
extension is approximate in the sense that it may be at
most (1 + ε)t-Lipschitz.

1 Introduction

A real-valued function on a metric space is t-Lipschitz
if for all points x and y, we have f(x) ≤ f(y)+ t d(x, y).
Let A and B be sets of points in a metric space. The
Lipschitz Extension Problem is to extend a t-Lipschitz
function f : A → R to a function f+ : A ∪ B → R
that is also t-Lipschitz and agrees with f at points of A.
In this paper, we give efficient algorithms for comput-
ing approximate Lipschitz extensions in metric spaces
that exhibit intrinsic low-dimensionality in the form of
bounded doubling dimension. This is a generalization of
low-dimensional Euclidean spaces that allows for pack-
ing arguments similar to geometric volume-packing ar-
guments.
More specifically, we will construct the maximum and

minimum Lipschitz extensions. The main application
of this work is in topological data analysis where it was
shown that topological invariants called subbarcodes of
an unknown function can be computed from upper and
lower bounds on that function [2]. Thus, for a Lipschitz
function known only at a subset of points, the algo-
rithms efficiently compute upper and lower bounds on
the function values at other points.

The paper provides two specific contributions to the
algorithmic theory of Lipschitz extensions. The first is
a direct reduction from the problem of computing max-
imum Lipschitz extensions to the all-nearest neighbor
problem. This involves constructing a new metric from
the input points and the function f so that the max-
imum Lipschitz extension can be computed from the
nearest neighbors in the new metric. The second con-
tribution is an approximation algorithm that can com-
pute Lipschitz extensions in linear time for any function
after O(n logn) preprocessing time. That is, we pay
O(n log n) time once and then can compute the maxi-
mum (or minimum) Lipschitz extension of any function

*Computer Science Department, North Carolina State Univer-
sity don.r.sheehy@gmail.com

in linear time. This requires a new notion of approxi-
mation where the output is guaranteed to lie between
the maximum t-Lipschitz extension and the maximum
(1 + ε)t-Lipschitz extension.

The approach is based on dual-tree algorithms on
greedy trees. The background on doubling metric
spaces, Lipschitz extensions, and greedy trees is given in
Section 2. We then detail the relationship between max-
imum Lipschitz extension and nearest neighbor search
in Section 3. Finally, in Section 4, we explain how dual-
tree algorithms can be used to compute the Lipschitz
extensions exactly and approximately with good bounds
on the running time.

Part of the novelty in this approach comes from the
fact that the usual methods to reduce the search space
in dual-tree algorithms don’t apply directly for Lipschitz
extensions. In standard dual-tree applications like all-
nearest neighbor search, one can prune neighbors that
are far away. However, the maximum Lipschitz exten-
sion of a point can be determined be a far away point
even if there are other points nearby.

2 Background

2.1 Metric Spaces and Doubling Dimension

A metric space is a pair (X, d) where X is a set and
d : X × X → R is the metric or distance function.
We denote the distance from x ∈ X to any S ⊆ X as
d(x, S) = mins∈S d(x, s).
The diameter of a set A ⊆ X is the maximum

pairwise distance of points in the set and is denoted
diameter(A). A collection of subsets of A is called a
cover if the union is all of A. The diameter of a cover
is the maximum diameter among the sets in the cover.
A δ-cover is a cover of diameter at most δ. For a set
A ⊆ X and δ ∈ R, the δ-covering number is the mini-
mum number of sets in any δ-cover.

The doubling constant for a metric space is the max-
imum over all subsets A ⊆ X of the (diameter(A)/2)-
covering number. The doubling dimension is the base-2
logarithm of the doubling constant.

Note that in many works, the doubling dimension is
defined in terms of the radius of a ball rather than the
diameter of an arbitrary set. There are some conve-
niences to that approach, but it leads to certain difficul-
ties when reasoning about the doubling dimension of a
subset. Specifically, if the doubling dimension is defined

37th Canadian Conference on Computational Geometry, 2025 148

in terms of radii instead of diameters, then the dimen-
sion is not monotone with respect to subsets—removing
points can increase the dimension. The definition given
here is the original one [6] and should be preferred.

The following lemma is the standard packing argu-
ment that motivates the use of doubling dimension in
many settings. It is the main tool for bounding the size
of sets in doubling metrics.

Lemma 1 (Standard Packing Lemma) Let P be a
finite metric space of doubling dimension d. If D is the
diameter of P and for all distinct a, b ∈ P , we have
d(a, b) > δ, then

|P | ≤
(
2D

δ

)d

.

Proof. Here is the standard proof included for com-
pleteness. If ρ = 2d is the doubling constant, then P
can be covered by ρ sets of diameter D/2. Covering
these sets gives a D/4 cover of size ρ2. Repeating this
process until the diameters are less than δ results in
cover where each point of P is in its own set. This
requires k = ⌈lgD/δ⌉ iterations and gives a total size

|P | ≤ ρk = 2dk ≤ 2d⌈lgD/δ⌉ ≤
(
2D

δ

)d

.

□

2.2 Lipschitz Functions and their Extensions

For any set X, there is a natural partial order on real
valued functions f, g : X → R defined as

f ≤ g if and only if for all x ∈ X, f(x) ≤ g(x).

Definition 2 A function f : X → R is t-Lipschitz iff
for all a, b ∈ X,

|f(a)− f(b)| ≤ tdX(a, b).

Equivalently, for all a, b ∈ X,

f(b)− tdX(a, b) ≤ f(a) ≤ f(b) + tdX(a, b).

A function is Lipschitz if it is 1-Lipschitz.

Let A ⊆ X be any subset of a metric space and let
f : A → R be any function. An extension of f to X is
a function f+ : X → R such that for all a ∈ A, we have
f+(a) = f(a). If f is t-Lipschitz, then there always ex-
ists a t-Lipschitz extension. Perhaps the simplest proof
of this statement is to construct such an extension. In
fact, we will construct two such extensions with cer-
tain universal properties as described in the following
lemma.

Lemma 3 For any metric space X and any t-Lipschitz
function f : A → X with compact1 A ⊆ X, there exist
t-Lipschitz extensions f̂ , f̌ : X → R such that for all
t-Lipschitz extensions g, we have f̂ ≤ g ≤ f̌ .

Proof. Define the minimum Lipschitz extension as

f̂(x) = max
a∈A

f(a)− td(x, a).

Define the maximum Lipschitz extension as

f̌(x) = min
a∈A

f(a) + td(x, a).

Let g : X → R be any t-Lipschitz extension of f . By
the definition of Lipschitz,

f(a)− td(x, a) ≤ g(x) ≤ f(a) + td(x, a)

for all x ∈ X and all a ∈ A. So,

g(x) ≥ max
a∈A

f(a)− td(x, a) = f̂(x),

and
g(x) ≤ min

a∈A
f(a) + td(x, a) = f̌(x).

□

2.3 Greedy Permutations and Greedy Trees

Given any ordered set of points P = {p0, . . . , pn−1} in
a metric space, we define the ith prefix to be

Pi := {p0, . . . , pn−1}.

We say that the permutation P is greedy if for all i > 0,
we have

d(pi, Pi) = max
q∈P

d(q, Pi).

In other words, every point is the farthest point to its
prefix. Also known as Gonzalez ordering or farthest
point traversals, the greedy permutation is a standard
way to produce samples that satisfy both packing and
covering properties.

The permutation P is β-approximate greedy if for all
i > 0, we have

βd(pi, Pi) ≥ max
j≥i

d(pj , Pi).

As the definition of (approximate) greedy permuta-
tions depends on the distance of each point to its nearest
predecessor, it is natural to associate each point with an
approximate nearest predecessor called its parent. The
insertion distance of pi is defined as

εi := d(pi, par(pi)).

1Here we are assuming A is compact. This is justified because
for all of our applications, A will be finite. If one wants to con-
sider these definitions for extensions of noncompact sets, then one
simply replaces the max and min with sup and inf.

149 CCCG 2025, Toronto, Canada, August 13–15, 2025

By convention, we set ε0 = ∞. For β-approximate
greedy permutations we require that parents are β-
approximate nearest predecessors, i.e., for all i > 0,

εi ≤ βd(pi, Pi).

Moreover, we require that the insertion distances are
in non-increasing order, i.e., that i < j implies εi ≥ εj .
The parent relation turns P into a tree called the greedy
tree.
Approximate greedy permutations satisfy the follow-

ing packing bounds.

Lemma 4 Let P be a β-approximate greedy permuta-
tion with insertion distances εi. For all i, j, k such that
0 ≤ i < j ≤ k, we have

d(pi, pj) ≥ εk/β.

Proof. We use the ordering on insertion distances, the
approximate nearest neighbor property of parents, and
the fact that pi ∈ Pj to derive the bound as follows.

εk ≤ εj ≤ βd(pj , Pj) ≤ βd(pj , pi).

□

We say that the greedy tree is α-scaling iff for all
a, b, c such that a = par(b) and b = par(c), we have
d(b, c) ≤ αd(a, b). That is, the distance between points
is decreasing by a factor of α in each level of the tree.

Greedy permutations and greedy trees can be con-
structed in O(n log n) time in doubling metrics [1, 5].

3 Lipschitz Extension as Nearest Neighbor Search

In this secction, we show how the Lipschitz extension
problem can be described exactly as an all-nearest-
neighbors problem in a new metric space defined by the
input function f .

Let A and B be finite subsets of a metric space (X,d).
Let f : A → R be t-Lipschitz. For any point b ∈ B,
computing the maximum t-Lipschitz extension means
computing

f̌(b) = min
a∈A

f(a) + td(a, b).

There is a direct reduction from this problem to nearest
neighbor search. Recall that a nearest neighbor of b in
A is defined as a point a minimizing d(a, b). There is
an extensive literature on this problem. In this case, we
want to minimize a kind of weighted distance where the
value f(a) influences the distance.
Define the new metric

d′(x, y) := td(x, y) + |f(x)− f(y)|.

If b ∈ B then f(b) is unknown. In that case, let w =
mina∈A f(a) be the smallest value of f and let

d′(a, b) := td(a, b) + |f(a)− w|.

Note that d′ is a proper metric as it is formed from the
sum of two other metrics. It can be viewed as the L1-
product metric of d (scaled by t) and the standard met-
ric on R. From this perspective, the points are viewed
as pairs (a, f(a)) or (b, w).

The following proposition shows how the nearest
neighbor with respect to d′ determines the maximum
Lipschitz extension.

Proposition 5 For any b ∈ B, let a ∈ A be the near-
est neighbor of b with respect to the distance d′. Then,
f̌(b) = f(a) + td(a, b).

Proof. Suppose for contradiction that there exists
some a′ ∈ A such that

f̌(b) = f(a′) + td(a′, b) < f(a) + td(a, b).

It follows that

d′(a′, b) < d′(a, b)

and thus, a was not the nearest neighbor of b with re-
spect to d′, a contradiction. □

The Trouble With (Approximate) Nearest Neighbors
Although the reduction from Lipschitz extension to
nearest neighbors gives correct output, it suffers three
substantial drawbacks.

1. The nearest neighbor search structure must be re-
constructed for each function f .

2. The dimension can increase.

3. Approximate nearest neighbors do not give an ap-
proximation to the Lipschitz extension.

This last point is the most critical. Most nearest
neighbor data structures that achieve fast running times
only give approximate answers. Suppose a is only a c-
approximate nearest neighbor of b with respect to d′.
Then, for all a′ ∈ A,

d′(a, b) ≤ cd′(a′, b).

There is no direct way to translate this kind of multi-
plicative approximation to a corresponding multiplica-
tive approximation for the Lipschitz extension. Indeed,
if the function value is close to zero, small absolute er-
ror may represent a large relative error. This challenge
motivates our new notion of approximate Lipschitz ex-
tension in the next section.

37th Canadian Conference on Computational Geometry, 2025 150

4 Dual-Tree Algorithms

This section presents algorithms for exact and approxi-
mate Lipschtiz extension. The inputs are metric spaces
A and B as well as a function f : A → R. The input
metric spaces have been preprocessed into greedy trees.
The output is a Lipschtiz extension g : B → R.

4.1 Traversing Greedy Trees

Given an α-scaling, β-approximate greedy permutation,
we process it into a list of 4-tuples of the form (q,

parent, radius, par radius), where

� q is the next point,

� parent is the parent of q,

� radius is the length of the longest path from q to
a leaf, and

� par radius is the length of the longest path from
parent to a leaf that only include points appearing
after q.

The length of a path is caclulated as the sum of the
lengths of the edges. The only element of this list that
is not self-explanatory is the last one. The purpose of
par radius is to update the radius of the parent af-
ter after inserting q. Each insertion can be viewed as
removing the subtree rooted at q and so the inserted
points are all identified with trees that partition P .
Thus, removing a subtree from the parent may change
its radius.

The 4-tuples are ordered according to the given
greedy permutation, so that for each i, we let

εi := d(pi, par(pi)),

and have ε0 ≥ ε1 ≥ e2 ≥ · · · .
The list of 4-tuples encodes the traversal of the greedy

tree. The radii are computed by iterating through the
permutation in reverse order. This reversal is like build-
ing up the tree from subtrees rather than deconstructing
the greedy tree into individual points as will happen in
the algorithm. Each time a point is encountered, the
radius of its parent is exactly the length of the longest
path from the parent to a leaf using only points that
come later in the order. The pseudocode is below.2

def traverse(P):

radius = {p: 0 for p in P}

par_radius = {}

for q in reversed(P):

p = P.par(q)

par_radius[q] = radius[p]

2The syntax guide for this style of pseudocode can be found
at python.org.

radius[p] = max(radius[p],

radius[q] + d(p, q)

)

return [(p, P.par(p), radius[p],

par_radius[p]

)

for p in P]

By definition, the maximum Lipschitz extension at
b ∈ Pb is defined in terms of a point a ∈ Pa. We say the
pair (a, b) is critical if

f̌(b) = f(a) + d(a, b).

There is a trivial quadratic-time algorithm to compute
the maximum Lipschitz extension. For each b ∈ B,
iterate over the points of A to search for the point a
such that (a, b) is critical.

In this section we give two dual-tree algorithms [3,4],
one for the exact maximum 1-Lipschitz extension and
one for an approximation. The general paradigm of
dual-tree algorithms gains efficiency by exploiting the
spatial locality inherent in performing many searches
on the same tree. The greedy trees represent clusters
and the tree structure gives a hierarchy of clusterings.
The two trees are traversed simultaneously. In both
algorithms, we speed up the naive quadratic-time algo-
rithm by comparing entire clusters of points instead of
treating them individually.

4.2 An Exact Algorithm

In this subsection, we give a high-level description of
a dual-tree algorithm for the exact maximum Lipschitz
extension problem. Later, we give a much more detailed
description of the approximate version.

It suffices to consider only 1-Lipschitz functions as
one can scale distances and function values for different
Lipschitz constants. Also, we don’t consider minimum
extensions separatly because the min extension of f is
the negation of the max extension of −f .

The algorithm inserts points one at a time. Each
inserted point x has an associated radius r[x] that goes
down as the cluster at x shrinks (i.e., as more points are
inserted). Let a ∈ A and b ∈ B be centers of nodes with
radii r[a] and r[b] respectively. Let Pa and Pb denote the
corresponding clusters, i.e., the points of the subtrees
rooted at the nodes.

The main data structure used by the algorithm is
the viability graph V , a bipartite graph on nodes main-
taining the invariant that if there exists a critical pair
(a′ ∈ Pa, b

′ ∈ Pb), then there is an edge a ∼ b in V .
We also store for each point b ∈ B, the current upper
bound

g[b] := min
a∼b

f(a) + d(a, b) ≥ f̌(b).

Note that for r[b] and g[b] we use square brackets to
remind the reader that these are not fixed functions, but

151 CCCG 2025, Toronto, Canada, August 13–15, 2025

rather dictionaries that are updated as the algorithm
progresses.

The points are processed in order of insertion distance
by merging the two greedy permutations. For each point
b in B that has been inserted, we maintain the invari-
ant that g[b] ≥ f̌(b). The viability graph starts with
a single edge connecting the roots of the two trees. In
each iteration, the new point is assigned to have the
same neighbors as its parent. The radius of the new
point and its parent are updated. For any point b whose
neighbors changed (including if it was just inserted), we
check to see if the new neighbor reduced g[b]. The last
step is to prune away edges incident to the new nodes
that are no longer needed to satisfy the viability graph
invariant. We show that the condition (1) below suffices
to guarantee an edge can be safely pruned.

The viablity graph invariant allows that if there are
no critical pairs in Pa × Pb, then a ∼ b can be pruned.
The trick is to prune these edges without searching for
a critical pair among the subtrees. Any edge a ∼ b
satisfying the following condition can be pruned.

g[b] + r[b] < (f(a)− r[a]) + (d(a, b)− r[a]− r[b]). (1)

This condition is exactly what is required to guaran-
tee the non-existence of a critical pair in Pa × Pb. By
the triangle inequality and the definition of Lipschitz,
we can see the following bounds hold for all a′ ∈ Pa and
b′ ∈ Pb whenever (1) holds.

f̌(b′) ≤ g[b] + r[b]

< (f(a)− r[a]) + (d(a, b)− r[a]− r[b])

≤ f(a′) + d(a′, b′).

So, (a′, b′) is not critical.

The correctness of the algorithm follows immediately
from the viability graph invariant. At the end of the
algorithm, all clusters are single points and there is an
edge if and only if the the points are critical. The upper
bounds give the exact maximum Lipschitz extension.

The running time is dominated in each iteration by
the work of iterating over the new edges and check-
ing if they can be pruned. Although one might expect
that many edges can be pruned in practice, there is no
clear way to guarantee that only a subquadratic num-
ber of edges will be considered in the course of the algo-
rithm. Unlike in the all-approximate-nearest-neighbor
problem, the critical pairs can be far apart. It seems un-
likely that any dual-tree methods will give subquadratic
running times for the exact Lipschitz extension prob-
lem. The next sections show that for approximations,
the viability graph remains sparse.

An Approximation Algorithm The goal of the approx-
imation algorithm is to produce a function g : B → R

such that f̌ ≤ g ≤ f̌1+ε for a given ε ≥ 0, where

f̌1+ε(b) = min
a∈A

f(a) + (1 + ε)d(a, b).

The approximation algorithm is the same as the exact
algorithm, except that we will modify the pruning con-
dition. If the following condition is satisfied, then the
edge a ∼ b can be pruned.

g[b]+r[b] < (f(a)−r[a])+(1+ε)(d(a, b)−r[a]−r[b]). (2)

Note that for ε = 0, this condition is the same as
the exact case. However, this new pruning condition
requires a different correctness proof and allows for a
stronger running time guarantee as we will see below.
This algorithm can and often will prune away even crit-
ical edges, but not before an approximate value of g has
been recorded.

For completeness, we give the pseudocode below for
edge pruning as a method of the viability graph. For
simplicity, we assume the value of ε is fixed.

We assume a basic bipartite graph data structure that
is initialized with a pair of vertex sets and supports the
operations add edge, remove edge, and nbrs. The first
two are self-explanatory. The function nbrs returns an
iterator over the neighbors of a vertex.

def try_prune(self, a, b, r, g, f):

if g[b] + r[b] < (f(a) - r[a])

+ (1+epsilon)(d(a,b) - r[a]- r[b]):

self.remove_edge(a,b)

def lipschitz_extend(A, B, f):

V = ViabilityGraph(A,B)

V.add_edge(A[0], B[0])

Initialize r and g

r = dict()

g = dict()

g[B[0]] = f(A[0]) + d(A[0], B[0])

order merged lists by insertion distance

L = merge(traverse(A), traverse(B))

for (q, parent, radius, par_radius) in L:

r[parent] = par_radius

r[q] = radius

if parent in g: # (if q in B)

for x in V.nbrs(parent):

g[q] = min(g[q], f(x) + d(x,q))

V.add_edge(x,q)

V.try_prune(x,q,r,g,f)

V.try_prune(x,parent,r,g,f)

else: # (if q in A)

for x in V.nbrs(parent):

37th Canadian Conference on Computational Geometry, 2025 152

g[x] = min(g[x], f(q) + d(q,x))

V.add_edge(q,x)

V.try_prune(q,x,r,g,f)

V.try_prune(parent,x,r,g,f)

return g

4.3 A Proof of Correctness

Theorem 6 The output of lipschitz extend(A,B,f)

is a function g : B → R such that

f̌ ≤ g ≤ f̌1+ε.

Proof. At any time in the algorithm, let A′ ⊆ A and
B′ ⊆ B be the points that have been inserted so far.
We prove that after each iteration of the main loop, we
satisfy the invariant that for all b ∈ B′, we have

f̌(b) ≤ g[b] ≤ min
a∈A′

(f(a) + (1 + ε)d(a, b)).

In other words, the current extension g on B′ is always
at least as large as the maximum Lipschitz extension
and is always at most as large as the maximum (1+ ε)-
Lipschitz extension of the points that have been inserted
so far. This invariant will imply the desired guarantee.

Let a′ ∈ A′ and b′ ∈ B′ be such that a′ minimizes
f(a′) + (1 + ε)d(a′, b′). When either a′ or b′ was in-
serted, if the parent was adjacent to the other point,
the algorithm updates g[b′] guaranteeing that

g[b′] ≤ f(a′) + d(a′, b′) ≤ f(a′) + (1 + ε)d(a′, b′)

This easily satisfies the invariant, so we may assume
that there is no such edge. So, at some earlier time
there was an edge a ∼ b that was pruned away where
a is an ancestor of a′ and b is an ancestor of b′. Let r0
and g0 denote the values of r and g when the edge was
pruned. When each point of B is inserted, the value of g
is initialized by the value of the parent plus its distance
and can only get smaller after that. So,

g[b′] ≤ g0[b] + r0[b].

By the pruning condition, the definition of Lipschitz,
and the triangle inequality, we have

g0[b] + r0[b] ≤ (f(a)− r0[a])

+ (1 + ε)(d(a, b)− r0[a]− r0[b])

≤ f(a′) + (1 + ε)d(a′, b′).

Thus, the invariant holds. □

4.4 Running Time Analysis

Degree Bounds. The key to efficient dual-tree algo-
rithms is a bound on the degree of the viability graph.

If there are only a constant number of neighbors of any
point, then each new point only requires constant time.

For the following lemmas, let s be the distance from
q to its parent in an iteration of the main loop.

Lemma 7 Then, for all inserted points p we have
r[p] ≤ s

1−α .

Proof. The value of r[p] is the length of a path in the
tree. The first edge in the path has length at most s.
Each subsequent edge shrinks by a factor of α. So,

r[p] ≤ s+ αs+ α2s+ · · · ≤ s

(∞∑
i=0

αi

)
=

s

1− α
.

□

Lemma 8 If a ∼ b is not pruned, then

d(a, b) ≤ 2 + 4/ε

1− α
s.

Proof. Because the edge was not pruned, we have

g[b] + r[b] > f(a)− r[a] + (1 + ε)(d(a, b)− r[a]− r[b]).

Rearranging this pruning condition, we get

εd(a, b) ≤ (g[b]− (f(a) + d(a, b))) + (2 + ε)(r[a] + r[b]).

Observe that g[b] ≤ f(a) + d(a, b) because otherwise,
we would have updated g[b] at the time the edge was
added. So, the inequality above simplifies to

εd(a, b) ≤ (2 + ε)(r[a] + r[b]).

So, by Lemma 7, we have

d(a, b) ≤ 2 + ε

ε

2s

1− α
=

2 + 4/ε

1− α
s.

□

Theorem 9 Let A and B be subsets of a doubling
metric space that have already been processed into β-
approximate greedy permutations with an α-scaling par-
ent mapping. Then lipschitz extend(A, B, f) runs
in (2 + 1/ε)O(d)n time.

Proof. The main loop iterates once for each input
point. In each iteration, it loops over the neighbors
of a point. It will suffice to show that the number
of unpruned edges incident to any point is always at
most constant. At any iteration, let s be the last in-
sertion distance. Then, any upruned edges a ∼ b will

satisfy d(a, b) ≤ 2+4/ε
1−α s by Lemma 8. Therefore, the di-

amter of the set of neighbors is at most twice this value.
Moreover, any pair of neighbors are s/β-separated by
Lemma 4. Finally, Lemma 1 implies that there are

at most
(

4β(2+4/ε)
1−α

)d
neighbors. Assuming reasonable

choices like α = 2/3 and β = 2, this yields a degree
bound of (48(1 + 2/ε))d = (2 + 1/ε)O(d). This means
that we can insert a point in (2 + 1/ε)O(d) time, giving
the desired running time for all 2n points. □

153 CCCG 2025, Toronto, Canada, August 13–15, 2025

References

[1] O. Chubet, D. Sheehy, and S. Sheth. Simple construc-
tion of greedy trees and greedy permutations, 2024.

[2] O. A. Chubet, K. P. Gardner, and D. R. Sheehy. A the-
ory of sub-barcodes. In 41st International Symposium
on Computational Geometry (SoCG 2025), 2025.

[3] O. A. Chubet, P. M. Parikh, D. R. Sheehy, and S. S.
Sheth. Approximating the directed hausdorff distance.
In Proceedings of the 35th Canadian Conference on
Computational Geometry, 2023.

[4] R. R. Curtin. Improving Dual-Tree Algorithms. PhD
thesis, Georgia Institute of Technology, Atlanta, GA,
USA, 2016.

[5] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[6] R. Krauthgamer and J. R. Lee. Navigating nets: Simple
algorithms for proximity search. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, 2004.

	Introduction
	Background
	Metric Spaces and Doubling Dimension
	Lipschitz Functions and their Extensions
	Greedy Permutations and Greedy Trees

	Lipschitz Extension as Nearest Neighbor Search
	Dual-Tree Algorithms
	Traversing Greedy Trees
	An Exact Algorithm
	A Proof of Correctness
	Running Time Analysis

