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Hausdorff Edit Distance

Jonathan James Perry* Benjamin Raichel*

Abstract

The Hausdorff distance is a standard measure of simi-
larity between two finite point sets. Here we introduce
the Hausdorff Edit Distance problem, where given a pa-
rameter k, the goal is to make up to k edits, either
insertions or deletions, to the point sets so as to mini-
mize their Hausdorff distance. When only deletions are
allowed the problem is polynomial time solvable, though
the problem is APX-Hard when insertions are allowed,
due to its connection with k-center clustering. By re-
ducing to repeated calls to any approximate k-center
clustering algorithm, we show how to achieve similar
approximation factors and running times for variants of
the Hausdorff Edit Distance problem.

1 Introduction

Hausdorff Distance. Given two finite point sets
P and Q in a metric space, the Hausdorff distance
dH(P,Q) is a natural and common way of measuring the
similarity between P and Q. Define the one sided Haus-
dorff distance, dh(P,Q), as the maximum distance of a
point in P from its nearest point inQ, that is dh(P,Q) =
maxp∈P ∥p−Q∥ (where ∥ ·∥ denotes the metric over the
points). Then the standard (two sided) Hausdorff dis-
tance is dH(P,Q) = max{dh(P,Q), dh(Q,P )}. Clearly
the Hausdorff distance can be computed in quadratic
time by looking at all pairwise distances, though us-
ing Voronoi diagrams in the plane it can be computed
in O(N logN) time where N = max{|P |, |Q|}. Us-
ing an approximate nearest neighbor data structure for
points in Rd for any constant d, one can get (1 + ε)-
approximation in O(N logN +N/εd) time [17].
The Hausdorff distance is well known to be sensitive

to outliers, as even a single outlier point can arbitrar-
ily increase the Hausdorff distance. One way to address
this is to use the Partial Hausdorff Distance introduced
in [19]. Given parameters k and ℓ, the k, ℓ Partial Haus-
dorff Distance is the maximum of the kth ranked value
in {∥p − Q∥ | p ∈ P} and the ℓth ranked value in
{∥q − P∥ | q ∈ Q}. Alternatively, one can consider the
RMS Hausdorff distance, where rather than taking the
maximum (or kth ranked) nearest neighbor distance,
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one instead takes the sum of the squares of all near-
est neighbor distances, see [2, 4] and references therein.
These and many other prior works also minimize the
Hausdorff distance or other measures under translation
(or other transformations), though a discussion of this
topic is outside the scope of the current paper.

Edit Distance. In this paper we consider the case
that the point sets P and Q may be faulty, and our goal
is to make up to k edits to P or Q so as to minimize
their Hausdorff distance. Here an edit will either be
an insertion or a deletion of a point from either P or
Q. When only deletions are allowed, this relates to the
Partial Hausdorff Distance discussed above, as well as
other outlier problems such as clustering with outliers
discussed below. For geometric problems on unordered
point sets, the more general case where insertions are
allowed appears to be less well studied, and indeed may
not make sense for many problems, such as center based
clustering. However, for ordered point sets there are
several relevant papers (as indeed such cases bear more
resemblance to classic string edit distance).

The Fréchet distance is a standard measure of simi-
larity between polygonal curves (i.e. ordered point sets).
[13] defined and gave various results for the Fréchet
edit distance, where the goal is to make up to k in-
sertions or deletions so as to minimize the Fréchet dis-
tance (prior works considered shortcutting, which re-
lates to the deletion only case). In the geometric edit
distance problem [1,14,15], given two ordered point se-
quences, the goal is to find a monotone matching of
sequences which minimizes the sum of the distances of
the matched points plus a penalty on the number of un-
matched points, i.e. arguably further from our notion
of edit than [13]. Finally, [12] considers the graph edit
distance problem, which requires modifying edges and
vertices and gets even further from our problem. In so
doing, they define a heuristic approach which they call
Hausdorff Edit Distance. This measure, however, differs
dramatically from ours, in that it is a measure between
graphs, and is a summed distance over all matched ver-
tices and edges, and thus is only mentioned as it shares
the same name.

Clustering. Insertions in the Hausdorff Edit Distance
problem are closely related to the standard k-center
clustering problem. Here one is given a set P of n points
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from a metric space, and the goal is to select a set C of
k center points from the metric space, so as to minimize
the maximum distance of any point in P to its nearest
center in C. This problem is known to be APX-hard.
Specifically, unless P=NP, for general metric spaces the
problem cannot be approximated with any factor less
than 2 [18], and even in the plane it remains hard to ap-
proximate with a factor of roughly 1.82 [11]. Conversely,
the standard greedy algorithm of Gonzalez [16] yields a
2-approximation in any metric space. When P ⊂ Rd for

constant d, [3] gave an O(n log k) + (k/ε)O(k1−1/d) time
(1 + ε)-approximation.

When we separate the deletion and insertion bud-
gets, Hausdorff Edit Distance then closely relates to
k-center clustering with outliers, where given a num-
ber 0 ≤ ℓ ≤ n, you are allowed to choose some ℓ points
from P that are not required to be covered by the cen-
ters. [7] initiated the formal study of k-center clustering
with outliers and gave a simple greedy 3-approximation
for any metric on the point set P . This was subse-
quently improved to a 2-approximation in [6] using LP
based methods. As pointed out in [10], these results
assume the metric consists only of the point set P , as
opposed to allowing P to be a subset from some larger
metric space from which the centers C can be chosen
(as we do in the current paper, which captures for ex-
ample the Euclidean case). By the triangle inequality,
however, these results would still imply constant factor
approximations for the case where P is a subset from
some larger metric space. Many other variants, includ-
ing bi-criteria approximations, streaming, and dynamic
variants have been considered [5, 9, 10].

Our Contributions. This paper introduces the Haus-
dorff Edit Distance problem, where insertions and dele-
tions are allowed. As remarked above, the deletion only
case relates to the previously defined Partial Hausdorff
Distance problem, though allowing insertions is new,
and we believe is a valuable addition given the ubiquity
of the Hausdorff distance. Our problem closely relates
to k-center clustering, which we directly use to achieve
the following results. Below, P is a set of n points, Q is
a set of m points, k and ℓ are integer parameters, and
N = max{m,n}.

� In Section 3, the Hausdorff Edit Distance problem
is first shown to be APX-hard to compute. Con-
versely, our main result shows that given any α-
approximation to k-center with run time T (n, k),
then for any constant ε > 0, one can compute an
(α + ε)-approximation to the Hausdorff Edit Dis-
tance in O

(
(mn+ k2N) log(N)+ k ·T (N, k)

)
time.

� Using the standard greedy 2-approximation for
k-center, our main result implies a (2 + ε)-
approximation for Hausdorff Edit Distance in

O
(
(mn+ k2N) log(N)

)
time. In Appendix A.1, we

argue that for the Euclidean case where P,Q ⊂ Rd

for constant d, this can be improved to either
a (2 + ε)-approximation in O

(
k2N log(N)

)
time

or a (1 + ε)-approximation in O
(
k2N log(N)

)
+

(k/ε)O(k1−1/d) time.

� In Section 3.1 we consider the case where we
have separate insertion and deletion budgets, k
and ℓ. This case is again APX-hard, and
we show that given any O(T (n, k, ℓ)) time α-
approximation to k-center clustering with ℓ out-
liers, then for any constant ε > 0, one can com-
pute an (α + ε)-approximation in O

(
(mn + kℓ ·

T (max{m,n}, k, ℓ)) log(mn)
)
time.

� In Section 3.2 we consider the case where only dele-
tions are allowed. This case is no longer APX-
hard. We show that it can be solved exactly in
O(mn) time in general, exactly in O(N logN) time
in the plane, and can be (1 + ε)-approximated in
O(N logN + N/εd) time for points in Rd for con-
stant d. The deletion only variant is very similar to
the previously defined Partial Hausdorff Distance,
though unlike [19], we provide a formal algorithm
and analysis, which both establishes the equiva-
lence to our variant with split budgets, and allows
for efficient computation in bounded dimensions.

� Finally, in Appendix A.4 we consider several nat-
ural variants of our problem, and remark how our
techniques easily extend to these variants.

2 Preliminaries

Let (X, ∥ · ∥) be a metric space with point set X and
metric ∥·∥, where for p, q ∈ X we write ∥p−q∥ to denote
their distance.1 Throughout, (X, ∥ · ∥) will be any fixed
ambient metric, and when we say we are given a finite
point set P , it is inferred that P ⊆ X and we are using
the metric ∥ · ∥. We assume that ∥p− q∥ takes constant
time to compute (otherwise, our running times must be
multiplied by the time it takes to compute ∥p− q∥).

For finite point sets P,Q, let ∥P − Q∥ =
minp∈P,q∈Q ∥p− q∥, where for a single point p we write
∥p−Q∥ = ∥{p}−Q∥. For finite sets P,Q we then define
the one-sided Hausdorff Distance as

dh(P,Q) = max
p∈P

(
min
q∈Q

∥p− q∥
)

= max
p∈P

∥p−Q∥,

where if P = ∅ then dh(P,Q) = 0, and if P ̸= ∅ and
Q = ∅ then dh(P,Q) = ∞. The standard Hausdorff

1We use the standard Euclidean distance notation as our gen-
eral metric distance notation, both for conceptual ease and to
distinguish it from our Hausdorff dH notation.



156 CCCG 2025, Toronto, Canada, August 13–15, 2025

Distance is then the bi-directional extension

dH(P,Q) = max
(
dh(P,Q), dh(Q,P )

)
.

For finite point sets P and Q, let their symmetric
difference be denoted P ⊕ Q = {x | (x ∈ P ∧ x ̸∈
Q)∨ (x ∈ Q∧x /∈ P )}. For a finite point set P , we refer
to either an insertion of a point into P or a deletion of
a point from P as an edit. Then for a finite set P of
n points and any integer 0 ≤ k ≤ n, let E(P, k) be the
set of all sets produced by up to k edits to P , that is
E(P, k) = {Q | |P ⊕Q| ≤ k}.

The Hausdorff Edit Distance is then defined as

dE
H(P,Q, k) = min

0≤k′≤k

(
min P ′∈E(P,k′),

Q′∈E(Q,k−k′)

(
dH(P ′, Q′)

))
,

that is, the minimum possible Hausdorff Distance after
up to k edits are made between P and Q. We write
real(dE

H(P,Q, k)) to denote a pair P ′ ∈ E(P, k′), Q′ ∈
E(Q, k − k′), for some 0 ≤ k′ ≤ k, realizing dE

H(P,Q, k).
Let P ′ ∈ E(P, k′), Q′ ∈ E(Q, k− k′) for some 0 ≤ k′ ≤

k. For α ≥ 1, we refer to P ′, Q′ as an α-approximation
to dE

H(P,Q, k) if dH(P ′, Q′) ≤ α · dE
H(P,Q, k). That is,

limiting to k edits is a hard constraint and the approx-
imation is on the distance.
Let I(P, k) = {Q | P ⊆ Q, |Q| − |P | ≤ k} and

D(P, k) = {Q | Q ⊆ P, |P | − |Q| ≤ k}. Then one
can analogously define the Hausdorff Insertion Distance
dI
H(P,Q, k) or Hausdorff Deletion Distance dD

H(P,Q, k)
by respectively replacing the E sets in the above defini-
tion with I or D sets.
We now define the standard k-center clustering ob-

jective. For a finite set P and an integer k ≥ 0 define

kcenter(P, k) = min
|C|≤k

max
p∈P

∥p− C∥,

that is, we wish to cover the set P with a set of centers
C so as to minimize the maximum distance of a point
in P to its nearest center in C. For α ≥ 1, we refer to
a set C ′, such that |C ′| ≤ k, as an α-approximation to
kcenter(P, k) if maxp∈P ∥p− C ′∥ ≤ α · kcenter(P, k).

3 Hausdorff Edit Distance

In this section we first show that computing dE
H(P,Q, k)

is APX-Hard, and then provide approximation algo-
rithms for dE

H(P,Q, k) and its variants.2 These results
are achieved by making a connection between Hausdorff
Edit Distance and k-Center Clustering, which becomes
clear after first making the following observation:

Lemma 1 For any finite point sets P,Q and integer
k ≥ 0, dE

H(P,Q, k) = dI
H(P,Q, k).

2For simplicity our results are presented in terms of computing
the value dE

H(P,Q, k) (or related quantities), however, the proofs
implicitly construct sets that achieve this value.

Proof. First, dE
H(P,Q, k) ≤ dI

H(P,Q, k) as they are
minimization problems respectively over edits or inser-
tions, where since an insertion is a type of edit, for any
set P ′ and integer k′ ≥ 0 we have I(P ′, k′) ⊆ E(P ′, k′).
Now we argue dE

H(P,Q, k) ≥ dI
H(P,Q, k). So let

{P ′, Q′} = real(dE
H(P,Q, k)) be the pair realizing the

Hausdorff Edit Distance. If no deletions occurred, i.e.
P ⊆ P ′ and Q ⊆ Q′, then P ′, Q′ is a possibility for
dI
H(P,Q, k) and so we are done. So suppose otherwise,

and let p be a point that was deleted from P , that is
p ∈ P \P ′. Rather than deleting p from P we instead in-
sert p into Q, that is, let P̂ = P ′∪{p} and Q̂ = Q′∪{p}.
We claim that dH(P̂ , Q̂) ≤ dH(P ′, Q′). First, ob-
serve that as p ∈ Q̂, dh(P̂ , Q̂) = maxx∈P̂ ∥x − Q̂∥ =

maxx∈P ′ ∥x − Q̂∥ ≤ maxx∈P ′ ∥x − Q′∥ = dh(P
′, Q′).

Similarly, as p ∈ P̂ , dh(Q̂, P̂ ) = maxx∈Q̂ ∥x − P̂∥ =

maxx∈Q′ ∥x − P̂∥ ≤ maxx∈Q′ ∥x − P ′∥ = dh(Q
′, P ′).

Thus dH(P̂ , Q̂) = max{dh(P̂ , Q̂), dh(Q̂, P̂ )} ≤
max{dh(P ′, Q′), dh(Q

′, P ′)} = dH(P ′, Q′). This in turn
implies dE

H(P,Q, k) ≥ dI
H(P,Q, k) as we then can re-

place all deletions from either set by corresponding in-
sertions without increasing the cost. □

Lemma 2 For any finite point set P and integer k ≥ 0,
dE
H(P, ∅, k) = kcenter(P, k).

Proof. By Lemma 1, we have dE
H(P, ∅, k) = dI

H(P, ∅, k),
thus we will equivalently prove that dI

H(P, ∅, k) =
kcenter(P, k). First, we show that dI

H(P, ∅, k) ≥
kcenter(P, k).

For readability, we write “ min
k′,P ′,Q′

” as shorthand for

“min 0≤k′≤k minP ′∈I(P,k′),Q′∈I(∅,k−k′)” below.

dI
H(P, ∅, k) = min

k′,P ′,Q′

(
dH(P ′, Q′)

)
≥ min

k′,P ′,Q′

(
dh(P

′, Q′)
)

= min
k′,P ′,Q′

(
max
p∈P ′

∥p−Q′∥
)

≥ min
Q′∈I(∅,k)

(
max
p∈P

∥p−Q′∥
)

= min
|Q′|≤k

(
max
p∈P

∥p−Q′∥
)

= kcenter(P, k)

Now we argue dI
H(P, ∅, k) ≤ kcenter(P, k). So let

C = real(kcenter(P, k)), and let r = kcenter(P, k) =
maxp∈P ∥p−C∥. Thus dh(P,C) = maxp∈P ∥p−C∥ = r.
Suppose there exists some c ∈ C such that ∥c−P∥ >

r, then maxp∈P ∥p − C \ c∥ = maxp∈P ∥p − C∥ = r.
Hence any such point can be deleted without affecting
the quality of the k-center solution, and so we assume
every point in C has some point from P within distance
r, which implies dh(C,P ) = maxc∈C ∥c−P∥ ≤ r. Thus
dI
H(P, ∅, k) ≤ dH(P,C) = max{dh(P,C), dh(C,P )} ≤

r. □

Computing kcenter(P, k) is known to be an APX-
Hard problem. Specifically, unless P=NP, in general
metric spaces it is hard to approximate within less than
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a factor of 2 [18], and even in the plane it is hard to
approximate within a factor of roughly 1.8 [11]. Thus
the above lemmas immediately imply the following.

Theorem 3 For any finite point sets P,Q and integer
k ≥ 0, the problems of computing either dE

H(P,Q, k) or
dI
H(P,Q, k) are APX-Hard. The problems remain APX-

Hard even when P,Q ⊂ R2.

We now provide an approximate decision algorithm
for Hausdorff Edit Distance, capable of using any α-
approximation algorithm for kcenter(P, k) as a subrou-
tine, where α > 1 is some constant. Let this subroutine
be denoted kcen(P, k).

Algorithm 1: HausEdit(P,Q, k, r)

1 Mark all p ∈ P such that ∥p−Q∥ ≤ r.
Mark all q ∈ Q such that ∥q − P∥ ≤ r.

2 Create sets P ′ ⊆ P and Q′ ⊆ Q by removing all
marked points.

3 β = ∞
4 for k′ = 0 to k do
5 β=min{β,max{kcen(P ′, k′),kcen(Q′, k−k′)}}
6 if β ≤ αr then // kcen(P, k) is an α-approx

7 return True
8 else
9 return False

Lemma 4 Let P be a set of n points, Q be a
set of m points, and let k ≥ 0 be an integer.
Let kcen(P, k) be an algorithm which returns an α-
approximation to kcenter(P, k) in O(T (n, k)) time.3

Then if HausEdit(P,Q, k, r) returns True then r ≥
dE
H(P,Q, k)/α, and if HausEdit(P,Q, k, r) returns

False then r < dE
H(P,Q, k). The running time of

HausEdit(P,Q, k, r) is O
(
mn+ k · T (max{m,n}, k)

)
.

Proof. Recall by Lemma 1 that dE
H(P,Q, k) =

dI
H(P,Q, k) and thus it suffices to consider the in-

sertion only case. Let P ′ and Q′ be as de-
fined in HausEdit(P,Q, k, r). First, observe that
dI
H(P,Q, k) ≤ r if and only if dI

H(P ′, Q′, k) ≤ r. This
follows as any point in P \ P ′ is already within dis-
tance r to a point in Q (and similarly for any point in
Q \ Q′), and thus does not require an insertion to r-
cover it. Moreover, no point p ∈ P \ P ′ can be used
to r-cover a point q ∈ Q′ as then ∥p − q∥ ≤ r which
would imply q ∈ Q \Q′. Finally, any point added to Q′

in real(dI
H(P ′, Q′, k)) to r-cover a point in P ′ will then

itself be r-covered by P ′ and hence does not require
points in P \ P ′ to cover it.

Next observe that dI
H(P ′, Q′, k) ≤ r if and only if

min0≤k′≤k max{dI
H(P ′, ∅, k′), dI

H(∅, Q′, k − k′)} ≤ r, as

3We assume T (n, k) is an increasing function of n and k.

shown by the following series of implications, where X
is the set of all pairs of point sets (CP ′ , CQ′) such that
|CQ′ | + |CP ′ | ≤ k and ||c − Q′|| ≤ r for all c ∈ CP ′ and
||c − P ′|| ≤ r for all c ∈ CQ′ . (Note that CP ′ will be
the subset of points we are inserting into P ′ to r-cover
points in Q′, so it suffices to restrict to subsets such that
every point in CP ′ is within distance r of a point in Q′.)
For readability, we write “∃ s.t. ” as shorthand for

“∃(CP ′ , CQ′) ∈ X s.t. ” below.

dI
H(P ′, Q′, k) ≤ r

⇔ ∃ s.t. dH(P ′ ∪ CP ′ , Q′ ∪ CQ′) ≤ r

⇔ ∃ s.t. max{dh(P ′ ∪ CP ′ , Q′ ∪ CQ′),

dh(Q
′ ∪ CQ′ , P ′ ∪ CP ′)} ≤ r

⇔ ∃ s.t. max{dh(P ′, Q′∪CQ′), dh(CP ′ , Q′∪CQ′),

dh(Q
′, P ′ ∪ CP ′), dh(CQ′ , P ′ ∪ CP ′)} ≤ r

⇔ ∃ s.t. max{dh(P ′, CQ′), dh(CP ′ , Q′ ∪ CQ′),

dh(Q
′, CP ′), dh(CQ′ , P ′ ∪ CP ′)} ≤ r

⇔ ∃ s.t. max{dh(P ′, CQ′), dh(Q
′, CP ′)} ≤ r

since CQ′ and CP ′ must be r-covered

⇔ ∃ s.t. max{dH(P ′, CQ′), dH(Q′, CP ′)} ≤ r

since the other direction must be ≤ r.

⇔ min
0≤k′≤k

max{dI
H(P ′, ∅, k′), dI

H(∅, Q′, k − k′)} ≤ r

Recall that by Lemma 1 and Lemma 2, for any
point set S and integer ℓ, dI

H(S, ∅, ℓ) = dE
H(S, ∅, ℓ) =

kcenter(S, ℓ). Thus, putting everything together,

dE
H(P,Q, k) ≤ r if any only if (3.1)

min
0≤k′≤k

max{kcenter(P ′, k′), kcenter(Q′, k − k′)} ≤ r.

Now at the end of HausEdit(P,Q, k, r), β =
min0≤k′≤k max{kcen(P ′, k′),kcen(Q′, k − k′)}. As
kcen(S, ℓ) is an α-approximation to kcenter(S, ℓ) for
any point set S and integer ℓ ≥ 0, Eq. (3.1) then im-
plies that if dE

H(P,Q, k) ≤ r then β ≤ αr and so the
algorithm returns True. Conversely, if dE

H(P,Q, k) > αr
then again by Eq. (3.1) we have β > αr as kcen(S, ℓ) ≥
kcenter(S, ℓ) for any set S and integer ℓ ≥ 0, and thus
the algorithm returns False.

As for the running time, the sets P ′ and Q′ can
be computed in O(mn) time. The running times
of kcen(P ′, k′) and kcen(Q′, k − k′) are respectively
bounded by T (n, k) and T (m, k), and there are k + 1
possible values for k′. Thus the overall running time is
O
(
mn+ k · T (max{m,n}, k)

)
. □

Lemma 5 Let R be the set consisting of 0 together with
all pairwise distances in the set P ∪Q. Then there exists
value ρ ∈ R such that dE

H(P,Q, k) ≤ ρ ≤ 2dE
H(P,Q, k).

Proof. Eq. (3.1) from the proof of Lemma 4 implies
that if dE

H(P,Q, k) ̸= 0 then it either occurs at a value
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kcenter(P ′, k′) or kcenter(Q′, k − k′) for some k′ and
sets P ′ ⊆ P and Q′ ⊆ Q, or at a value of r where the
P ′ and Q′ sets change.
First, note that P ′ and Q′ are determined by remov-

ing all points within distance r of any point in Q or P ,
respectively. Thus the set of distances between a point
in P and a point in Q captures all values of r where the
sets P ′ and Q′ might change.

For any point set S and integer ℓ ≥ 0, the greedy
algorithm of Gonzalez [16] achieves a 2-approximation
to kcenter(S, ℓ), while only placing centers at points
in S. (Recall S may be a strict subset from a met-
ric on a larger point set X.) Thus if dE

H(P,Q, k) is
achieved at some kcenter(P ′, k′) or kcenter(Q′, k − k′)
value, then there is some value ρ in the set of all pair-
wise distances in P or all pairwise distances in Q such
that dE

H(P,Q, k) ≤ ρ ≤ 2dE
H(P,Q, k).

Combining the cases we have that there exists value
ρ ∈ R such that dE

H(P,Q, k) ≤ ρ ≤ 2dE
H(P,Q, k). □

Lemma 6 Let P be a set of n points, Q be a set of m
points, and k ≥ 0 be an integer. Let kcen(P, k) be an al-
gorithm which for some constant 1 < α ≤ 2 returns an
α-approximation to kcenter(P, k) in O(T (n, k)) time.
Then for any constant ε > 0, one can compute
an (α + ε)-approximation to dE

H(P,Q, k) in O
(
(mn +

k2 max{m,n}) log(mn) + k · T (max{m,n}, k)
)
time.

Proof. Let R be the set of values from Lemma 5.
We sort R and then binary search over it with
HausEdit(P,Q, k, r), where for the kcen(P, k) subrou-
tine we use the standard O(nk) time 2-approximation
algorithm for kcenter(P, k) due to Gonzalez [16] (which
may, for now, differ from the α-approximate subroutine
from the current lemma statement). This ultimately
yields a pair of values r′ < r∗ that are consecutive in the
sorted order of R, such that HausEdit(P,Q, k, r′) re-
turned False andHausEdit(P,Q, k, r∗) returned True.4

Lemma 4 then implies r′ < dE
H(P,Q, k) ≤ 2r∗.

By Lemma 5 there exists a value ρ ∈ R such that
dE
H(P,Q, k) ≤ ρ ≤ 2dE

H(P,Q, k). Thus by Lemma 4
for any x ≥ ρ, HausEdit(P,Q, k, x) must return True.
This implies r′ < ρ as HausEdit(P,Q, k, r′) returned
False, and as ρ ∈ R and r∗ is the next value in the
sorted order of R after r′, this in turn implies r∗ ≤
ρ. Combining this with the above inequalities gives
dE
H(P,Q, k) ≤ 2r∗ ≤ 2ρ ≤ 4dE

H(P,Q, k), or equivalently
dE
H(P,Q, k) ∈ [r∗/2, 2r∗].
Consider the set of valuesX = {x0, x1, . . . , xz}, where

xi =
r∗

2 (1 + ε/2)i and z = ⌈log1+ε/2(4)⌉ = O(1) for any
constant ε > 0. Note that for any i we have xi+1/xi =
(1 + ε/2), and z was chosen such that xz ≥ 2r∗. Now

4Since 0 ∈ R, Lemma 4 implies if it returned True for all r ∈ R
then dE

H(P,Q, k) = 0. Since ρ ∈ R (as described in Lemma 5),
it cannot return False for all r ∈ R as Lemma 4 then implies
ρ < dE

H(P,Q, k).

we binary search over X for an adjacent pair xj , xj+1 ∈
X such that HausEdit(P,Q, k, xj) returns False and
HausEdit(P,Q, k, xj+1) returns True, except this time
we use the α-approximate subroutine for kcen(P, k)
from the current lemma statement. (By the above
HausEdit(P,Q, k, xz) must return True, so not all inX
can return False, and if all return True then αx0 is the
desired approximation.) Since HausEdit(P,Q, k, xj)
returns False, by Lemma 4, xj < dE

H(P,Q, k), and
as xj+1/xj = (1 + ε/2), this implies that xj+1 <
(1 + ε/2)dE

H(P,Q, k). Since HausEdit(P,Q, k, xj+1)
returns True we have dE

H(P,Q, k) ≤ αxj+1. Thus
dE
H(P,Q, k) ≤ αxj+1 ≤ α(1 + ε/2)dE

H(P,Q, k) ≤ (α +
ε)dE

H(P,Q, k) since α ≤ 2. In other words, αxj+1 is the
desired (α+ ε)-approximation to dE

H(P,Q, k).
As for the running time, the set R can be com-

puted and sorted in O(mn log(mn)) time. Each of
the O(log(mn)) calls to HausEdit(P,Q, k, r) when us-
ing the O(nk) time 2-approximation for kcen(P, k)
take O(mn + k2 max{m,n}) time. The O(1) calls
to HausEdit(P,Q, k, xi) when using the O(T (n, k))
time α-approximation for kcen(P, k) take O

(
mn +

k · T (max{m,n}, k)
)

time.5 Thus the total time is

O
(
(mn+k2 max{m,n}) log(mn)+k ·T (max{m,n}, k)

)
as claimed. □

Using the standard O(nk) time 2-approximation al-
gorithm for kcenter(P, k) due to Gonzalez [16] for
kcen(P, k) in Lemma 6 directly gives the following.

Theorem 7 Given a set P of n points, a set Q of m
points, and an integer k ≥ 0, then for any chosen con-
stant ε > 0, one can compute (2 + ε)-approximation in
O((mn+ k2 max{m,n}) log(mn)) time.

In Appendix A.1 we show that for points in low di-
mensional Euclidean space we can get improved running
times and approximations by using grids and WSPDs.

Theorem 8 Given a set P ⊂ Rd of n points, a set
Q ⊂ Rd of m points, and an integer k ≥ 0, where d is
a constant and N = max{m,n}, then for any chosen
constant ε > 0, one can compute a:

� (2 + ε)-approximation in O
(
k2N log(N)

)
time.

� (1 + ε)-approximation in O
(
k2N log(N)

)
+

(k/ε)O(k1−1/d) time.

3.1 Separate Budgets

Let dE
H(P,Q, k, ℓ) be the Hausdorff Separate Budget

Edit Distance, which differs from the Hausdorff Edit
Distance by separating the budgets for insertion and

5For 0 < ε ≤ 1, we are searching over z = ⌈log1+ε/2(4)⌉ =

O(1/ log(1 + ε)) = O(1/ε) values. Thus more precisely we make
O(log(1/ε)) calls, which is a constant when assuming ε is constant.
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deletion, which are noted as k and ℓ, respectively.
Below is our main theorem from this section, where
kcenterOut(P, k, ℓ) denotes the k-center with ℓ outliers
objective. All other details are in Appendix A.2

Theorem 9 Let P be a set of n points, Q be a set of
m points, and let k, ℓ ≥ 0 be integers. Let kcen(P, k, ℓ)
be an algorithm which returns an α-approximation to
kcenterOut(P, k, ℓ) in O(T (n, k, ℓ)) time, for some con-
stant α > 1. Then for any constant ε > 0, one can
compute an (α + ε)-approximation to dE

H(P,Q, k, ℓ) in
O
(
(mn+ kℓ · T (max{m,n}, k, ℓ)) log(mn)

)
time.

3.2 Deletion Only

Let dD
H(P,Q, k) be the Hausdorff Deletion Distance,

which minimizes dH
(
D(P, k′), D(Q, k − k′)

)
where 0 ≤

k′ ≤ k. This is very similar to the Partial Hausdorff
Distance [19], as discussed in the introduction, though
unlike [19], here we provide a formal algorithm and anal-
ysis. (Indeed, the lemma below provides the formal
argument of equivalence of the problems for separated
budgets, as discussed in Appendix A.4.)

Algorithm 2: HausDel(P,Q, k)

1 If k ≥ n+m then return 0. If P = ∅ or Q = ∅
return ∞.

2 Compute the multisets DP = {∥p−Q∥ | p ∈ P}
and DQ = {∥q − P∥ | q ∈ Q}.

3 Let D = ⟨D1,D2, . . . ,Dn+m⟩ denote the values

in D = DP ⊎DQ listed in decreasing order.
4 return Dk+1

In Algorithm 2 and throughout this section, X ⊎ Y
denotes the mutiset union (i.e. additive union) of two
multisets X and Y . Thus |X ⊎ Y | = |X|+ |Y |.

Lemma 10 Let P be a set of n points, Q be a set of m
points, and k ≥ 0 an integer. Then HausDel(P,Q, k)
computes dD

H(P,Q, k) in O(nm) time.

Proof. The first line of the algorithm handles some
trivial cases, and in the remainder of the proof we as-
sume k < n+m and neither P ̸= ∅ nor Q ̸= ∅.

Let D(X,Y ) = ⟨D(X,Y )1, . . .D(X,Y )|X|+|Y |⟩ be the
list of (bi-chromatic) nearest neighbor distances be-
tween any sets X and Y , sorted in descending order.
Thus dH(X,Y ) = D(X,Y )1, and note that in the algo-
rithm HausDel(P,Q, k), we have D = D(P,Q).

Consider any pair of sets P ′ ∈ D(P, k′), Q′ ∈ D(Q, k−
k′) for any value 0 ≤ k′ ≤ k. Observe that when we
delete points from P and Q, producing the sets P ′

and Q′, the nearest neighbor distances of the remain-
ing points cannot decrease. Thus the list D(P ′, Q′)
is obtained from the list D(P,Q) by deleting up to

k values from the list, and mapping each remain-
ing value D(P,Q)i to a unique value D(P ′, Q′)j such
that D(P,Q)i ≤ D(P ′, Q′)j . Thus D(P,Q)k+1 ≤
D(P ′, Q′)1, as clearly over the space of all such map-
pings of the list D(P,Q), the resulting list with the
minimum first value would arise from deleting the top
k values and not increasing the (k + 1)th value.

Let z be the largest index such that z ≤ k and
D(P,Q)z > D(P,Q)k+1 (z = 0 if no such index exists).
Now let ⟨x1, . . . , xn+m⟩ denote the ordered list of
points from P and Q corresponding to the values
⟨D(P,Q)1, . . . ,D(P,Q)n+m⟩, and let P̂ ⊆ P and Q̂ ⊆
Q be the sets resulting from deleting x1, . . . , xz (no
points are deleted if z = 0). We now argue that
D(P,Q)k+1 = D(P̂ , Q̂)1, which, since we already ar-
gued thatD(P,Q)k+1 was a lower bound on any possible
deletion of k points, implies dD

H(P,Q, k) = D(P,Q)k+1.
Observe that for any i > z, no point in x1, . . . , xz

can be the nearest neighbor of xi from the other
set (i.e. realizing D(P,Q)i), as this would imply
xz has a neighbor from the other set in distance
less than D(P,Q)z, a contradiction. This implies
D(P̂ , Q̂) = ⟨D(P,Q)z+1, . . . ,D(P,Q)n+m⟩. Thus we
have D(P,Q)k+1 = D(P̂ , Q̂)1 as claimed, since by the
definition of z we have that D(P,Q)z+1 = D(P,Q)k+1.
As for the running time, the multiset D = DP ⊎DQ

can be computed in O(nm) time by looking at all pair-
wise distances. The return value Dk+1 is the k + 1
largest value in the multiset D, which can be computed
in O(|D|) = O(n + m) time using the standard linear
time median selection algorithm [8], thus the total time
is dominated by the time to compute D. □

In the above algorithm it takes O(nm) to compute
the multiset of all bi-chromatic nearest neighbor dis-
tances, namely D = DP ⊎DQ. In the plane, these dis-
tances can be computed more efficiently using Voronoi
diagrams. Namely, it takes O(n log n) time to compute
the Voronoi diagram of P , which allows for O(logn)
time point location queries. Thus, by querying all of Q,
we get DQ in O((n+m) logn) time. Similarly, DP can
be computed in O((n + m) logm) time. As returning
the k + 1 largest value in D takes O(n + m) time, we
have the following.

Corollary 11 Let P ⊂ R2 be a set of n points, Q ⊂ R2

be a set of m points, and k ≥ 0 be an integer. Let
N = max{m,n}, then one can compute dD

H(P,Q, k) in
O
(
N log(N)

)
time.

In Appendix A.3 we argue that by using Approximate
Nearest Neighbor data structures one can achieve a fast
(1 + ε)-approximation for points in Rd, for constant d.

Corollary 12 Let P ⊂ Rd be a set of n points, Q ⊂ Rd

be a set of m points, and k ≥ 0 be an integer, where d is
a constant. Let N = max{m,n}, then one can compute
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a (1+ε)-approximation to dD
H(P,Q, k) in O

(
N log(N)+

N/εd
)
time.

Appendix A.4 discusses how our above results for the
deletion only and general Hausdorff Edit Distance can
be extended to other natural variants.
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A Hausdorff Edit Distance Continued

A.1 The Euclidean Case

Throughout, P and Q have been finite point sets in an arbi-
trary metric. If instead we restrict P and Q to be finite point
sets in Rd with the standard Euclidean metric, then when d
is a constant, the above result can be improved both in terms
of running time and approximation quality (though the lat-
ter requires bounding k). We now sketch how to achieve
this.

For the running time, the mn term in Theorem 7 arises
due to two reasons. The first reason is on Line 1 in
HausEdit(P,Q, k, r). Here the algorithm marks a set Pr

of points which is defined as all p ∈ P within distance r
of some point q ∈ Q (and similarly define Qr). Analo-
gously define the set Pαr consisting of all p ∈ P within
distance αr of some point q ∈ Q. Observe that the argu-
ment of correctness for the algorithm is identical if instead
of precisely marking Pr we instead mark any subset P̂ ⊆ P
such that Pr ⊆ P̂ ⊆ Pαr. When d is a constant, finding
such a set P̂ can be done in O(n + m) time using stan-
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dard grid based techniques, see for example [17].6 Thus
using grids, the run time of HausEdit(P,Q, k, r) becomes
O
(
m+ n+ k · T (max{m,n}, k)

)
= O

(
k · T (max{m,n}, k)

)
.

The other reason for themn term in Theorem 7 is from the
use of the O(mn) sized set R from Lemma 5, consisting of all
pairwise distances in P ∪Q. However, if P,Q ⊂ Rd for any
constant d, then we can use WSPD’s (see for example [17])
to approximate the values from the set R in Lemma 5. In
particular, in O((m+ n) log(m+ n) + (m+ n)/εd) time one
can construct a set R′ of size O((m + n)/εd) such that for
any value r ∈ R there exists a value r′ ∈ R′ where r ≤ r′ ≤
(1+ε)r. Thus in Lemma 6 rather than binary searching over
R, we can binary search over R′. Recall that there the binary
search over R was used to construct a constant spread inter-
val containing dE

H(P,Q, k). If instead we binary search over
R′ this will produce an interval containing dE

H(P,Q, k) that
is a (1+ε) factor larger, and as all we require is that the inter-
val has constant spread, we can in fact set ε = 1. The rest of
the proof, which then searches over this constant spread in-
terval, remains the same and the running time then becomes
O
(
(m+n+k2 max{m,n}) log(mn)+k ·T (max{m,n}, k)

)
=

O
(
k2 max{m,n} log(mn) + k · T (max{m,n}, k)

)
.

Using the 2-approximation of Gonzalez for kcen we thus
get a O

(
k2 max{m,n} log(mn)

)
time (2+ε)-approximation.

On the other hand, for a point set P ⊂ Rd for constant

d, [3] gave an O(n log k) + (k/ε)O(k1−1/d) time (1 + ε)-
approximation to kcenter(P, k). Thus instead using this

for kcen gives an O(k2 max{m,n} log(mn))+(k/ε)O(k1−1/d)

time (1 + ε)-approximation. Thus in summary we have the
following.

Theorem 8 (Restated) Given a set P ⊂ Rd of n points,
a set Q ⊂ Rd of m points, and an integer k ≥ 0, where d is a
constant and N = max{m,n}, then for any chosen constant
ε > 0, one can compute a:

� (2 + ε)-approximation in O
(
k2N log(N)

)
time.

� (1 + ε)-approximation in O
(
k2N log(N)

)
+

(k/ε)O(k1−1/d) time.

A.2 Separate Budgets Continued

Here we give the full details from Section 3.1.

Let dE
H(P,Q, k, ℓ) be the Hausdorff Separate Budget Edit

Distance, which differs from the Hausdorff Edit Distance by
separating the budgets for insertion and deletion, which are
noted as k and ℓ, respectively. Despite Lemma 1 not holding
for this problem, we will prove nearly equivalent results as
those shown for Hausdorff Edit Distance.

First, observe that dI
H(P,Q, k) = dE

H(P,Q, k, 0). As The-
orem 3 showed computing dI

H(P,Q, k) is APX-Hard, we im-
mediately have the following corollary.

6As a rough sketch, consider the uniform grid of cell side length
(α− 1)r/

√
d and diameter (α− 1)r. Hash all points from P into

the cells of this grid. For every point q ∈ Q, there are O((2(α −
1)/

√
d)d) = O(1) cells intersecting a ball of radius r around q,

and any point in these cells is at most r + (α − 1)r = αr away
from q. Thus we simply mark all points from P contained in any
such cell around a point of Q.

Corollary 13 For any point sets P,Q and integers k, ℓ ≥ 0,
the problem of computing dE

H(P,Q, k, ℓ) is APX-Hard. The
problem remains APX-Hard even when P,Q ⊂ R2.

Recall that D(P, ℓ) denotes the set of all subsets of
P resulting from deleting at most ℓ points from P .
Then for the k-center clustering with outliers problem
[6, 7] the objective is to compute kcenterOut(P, k, ℓ) =
minP D∈D(P,ℓ)

(
kcenter(P D, k)

)
.

Lemma 14 For any finite point set P and integers k, ℓ ≥ 0,
dE
H(P, ∅, k, ℓ) = kcenterOut(P, k, ℓ).

Proof. dE
H(P, ∅, k, ℓ) = minP D∈D(P,ℓ)

(
dI
H(P D, ∅, k)

)
and by

definition kcenterOut(P, k, ℓ) = min
P D∈D(P,ℓ)

(
kcenter(P D, k)

)
.

The lemma statement then follows by Lemma 1 and
Lemma 2, which when combined say that dI

H(P, ∅, k) =
kcenter(P, k). □

We are also able to construct an equivalent decision al-
gorithm, HausEdit(P,Q, k, ℓ, r), which uses as a subrou-
tine any α-approximation algorithm for kcenterOut(P, k, ℓ),
which we denote by kcen(P, k, ℓ).

Algorithm 3: HausEdit(P,Q, k, ℓ, r)

1 Mark all p ∈ P such that ∥p−Q∥ ≤ r.
Mark all q ∈ Q such that ∥q − P∥ ≤ r.

2 Create sets P ′ ⊆ P and Q′ ⊆ Q by removing all
marked points.

3 β = ∞
4 for ℓ′ = 0 to ℓ do
5 for k′ = 0 to k do

6
β = min{β,max{kcen(P ′, k′, ℓ′),

kcen(Q′, k − k′, ℓ− ℓ′)}}

7 if β ≤ αr then // kcen(P, k, ℓ) is an α-approx.

8 return True
9 else

10 return False

Lemma 15 Let P and Q be sets of n and m points. Let
k, ℓ ≥ 0 be integers, and kcen(P, k, ℓ) an algorithm returning
an α-approximation to kcenterOut(P, k, ℓ) in O(T (n, k, ℓ))
time.7 Then if HausEdit(P,Q, k, ℓ, r) returns True then
r ≥ dE

H(P,Q, k, ℓ)/α, and if HausEdit(P,Q, k, ℓ, r) re-
turns False then r < dE

H(P,Q, k, ℓ). The running time of
HausEdit(P,Q, k, ℓ, r) is O

(
mn+ kℓ · T (max{m,n}, k, ℓ)

)
.

Proof. The proof follows the same logic as that of Lemma 4,
though with some changes required. For clarity, we repro-
duce the entire proof with the relevant changes.

Let P ′, Q′ be as defined in HausEdit(P,Q, k, ℓ, r).
First, observe that dE

H(P,Q, k, ℓ) ≤ r if and only if
dE
H(P ′, Q′, k, ℓ) ≤ r. This follows as any point in P \ P ′

is already within distance r to a point in Q \ Q′, and vice
versa. Thus points in P \P ′ and Q\Q′ are r-covered without

7We assume T (n, k, ℓ) is an increasing function of n, k, and ℓ.
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the need for any insertions or deletions, and any deletions
from P ′ or Q′ will not change this fact. Moreover, points
in P \ P ′ do not r-cover any point in Q′ (nor do points in
Q \ Q′ r-cover points in P ′), and any point added to Q′

in real(dI
H(P ′, Q′, k, ℓ)) to r-cover a point in P ′ that is not

deleted, will then itself be r-covered and hence does not re-
quire points in P \ P ′ to cover it.

Next we argue that dE
H(P ′, Q′, k, ℓ) ≤ r if and

only if min0≤ℓ′≤ℓ,0≤k′≤k max{kcenterOut(P ′, k′, ℓ′),
kcenterOut(Q′, k − k′, ℓ − ℓ′)} ≤ r. Let X represent the
set of tuples (P D, QD, CP D , CQD) such that P D ∈ D(P ′, ℓ′) and
QD ∈ D(Q′, ℓ− ℓ′) for some integer 0 ≤ ℓ′ ≤ ℓ, and such that
|CP D | + |CQD | ≤ k where ||c − QD|| ≤ r for all c ∈ CP D and
||c − P D|| ≤ r for all c ∈ CQD . (Without loss of generality,
we view all deletions as occurring before any insertion, thus
first producing the sets P D and QD. Note the set CP D will
then be the subset of points we are inserting into P D to
r-cover points in QD, so it suffices to restrict to subsets such
that every point in CP D is within distance r of a point in
QD.) For readability, we write “∃ s.t. ” as shorthand for
“∃(P D, QD, CP D , CQD) ∈ X s.t. ” below.

dE
H(P ′, Q′, k, ℓ) ≤ r

⇔ ∃ s.t. dH(P D ∪ CP D , QD ∪ CQD) ≤ r

⇔ ∃ s.t. max{dh(P D ∪ CP D , QD ∪ CQD),

dh(Q
D ∪ CQD , P D ∪ CP D)} ≤ r

⇔ ∃ s.t. max{dh(P D, QD ∪ CQD), dh(CP D , QD ∪ CQD),

dh(Q
D, P D ∪ CP D), dh(CQD , P D ∪ CP D)} ≤ r

⇔ ∃ s.t. max{dh(P D, CQD), dh(CP D , QD ∪ CQD),

dh(Q
D, CP D), dh(CQD , P D ∪ CP D)} ≤ r

⇔ ∃ s.t. max{dh(P D, CQD), dh(Q
D, CP D)} ≤ r

since CQD and CP D must be r-covered

⇔ ∃ s.t. max{dH(P D, CQD), dH(QD, CP D)} ≤ r

since the other direction must be ≤ r

⇔ min0≤ℓ′≤ℓ,0≤k′≤k max{dE
H(P ′, ∅, k′, ℓ′),

dE
H(∅, Q′, k − k′, ℓ− ℓ′)} ≤ r

Recall that by Lemma 14, for any point set S and integers
a and b, dE

H(S, ∅, a, b) = kcenterOut(S, a, b). Thus putting
everything together we have that

dE
H(P,Q, k, ℓ) ≤ r if and only if (A.1)

min
0≤ℓ′≤ℓ,
0≤k′≤k

max
{
kcenterOut(P ′, k′, ℓ′),

kcenterOut(Q′, k − k′, ℓ− ℓ′)
}
≤ r.

Now at the end of HausEdit(P,Q, k, r), β =
min0≤ℓ′≤ℓ,0≤k′≤k max{kcen(P ′, k′, ℓ′),kcen(Q′, k − k′, ℓ −
ℓ′)}. As kcen(S, a, b) is an α-approximation to
kcenterOut(S, a, b) for any point set S and integers a, b ≥
0, Eq. (A.1) then implies that if dE

H(P,Q, k, ℓ) ≤ r then
β ≤ αr and so the algorithm returns True. Conversely, if
dE
H(P,Q, k, ℓ) > αr then again by Eq. (A.1) we have β > αr

as kcen(S, a, b) ≥ kcenterOut(S, a, b) for any set S and in-
tegers a, b ≥ 0, and thus the algorithm returns False.

As for the running time, the sets P ′ and Q′ can be com-
puted in O(mn) time. The running times of kcen(P ′, k′, ℓ′)

and kcen(Q′, k − k′, ℓ − ℓ′) are respectively bounded by
T (n, k, ℓ) and T (m, k, ℓ), and there are ℓ + 1 possible val-
ues for ℓ′ and k + 1 possible values for k′. Thus the overall
running time is O

(
mn+ kℓ · T (max{m,n}, k, ℓ)

)
. □

It is easy to see that Lemma 5 applies to the separate
budgets problem as well. Additionally, Lemma 6 also still
applies as it is simply searching using the decision procedure.
The analogous lemma for the separate budget case is given
below as a theorem. Recall Lemma 6 first used the Gonzalez
algorithm to get a constant spread interval, which was then
searched over using an α-approximation. Here we assume
the same α-approximation is used in both parts for simplic-
ity, and as there is not a clear best algorithm to choose now.
(For simplicity, Lemma 6 assumed α ≤ 2, though the proof
extends to any constant α.)

Theorem 9 (Restated) Let P be a set of n points, Q
be a set of m points, and let k, ℓ ≥ 0 be integers.
Let kcen(P, k, ℓ) be an algorithm which returns an α-
approximation to kcenterOut(P, k, ℓ) in O(T (n, k, ℓ)) time,
for some constant α > 1. Then for any constant ε > 0, one
can compute an (α + ε)-approximation to dE

H(P,Q, k, ℓ) in
O
(
(mn+ kℓ · T (max{m,n}, k, ℓ)) log(mn)

)
time.

As discussed in the introduction, there are various known
algorithms for k-center clustering with outliers, with differ-
ent trade-offs. For example, if we use the simple greedy con-
stant factor approximation of [7] in the above theorem, then
we get a polynomial time constant factor approximation for
dE
H(P,Q, k, ℓ).

A.3 Argument for Corollary 12

Given a set P ⊂ Rd of n points, for a query point q, we
refer to a point x ∈ P as a (1 + ε) approximate nearest
neighbor (ANN) of q if ∥x− q∥ ≤ (1 + ε)minp∈P ∥p− q∥. It
is known that for any point set P ⊂ Rd for constant d, in
O(n logn) time one can construct a data structure such that
given any query point q, in O(logn + 1/εd) time it returns
a (1 + ε)-ANN [17].

We can replace the multiset D of exact bi-chromatic
nearest neighbor distances from HausDel(P,Q, k) (Algo-
rithm 2) with a multiset Dε of approximate bi-chromatic
nearest neighbor distances as follows. For the point set P ,
in O(n logn) time we construct a (1 + ε)-ANN data struc-
ture, which supports O(logn+ 1/εd) time nearest neighbor
queries, and then query all points in Q. Then we build
such a structure for Q and query all points of P . Thus
the multiset of all distances between queried points and
their (1 + ε)-ANN is the desired multiset Dε, which took
O(n logn+m(logn+ 1/εd) +m logm+ n(logm+ 1/εd)) =
O(N logN+N/εd) time to compute, where N = max{m,n}.

Recall that HausDel(P,Q, k) returned the k + 1 largest
value in D, denoted Dk+1. Let D

ε
k+1 denote the k+1 largest

value in Dε. Clearly Dk+1 ≤ Dε
k+1 as our (1 + ε)-ANN

distances are never smaller than the true nearest neighbor
distances. Moreover, Dε

k+1 ≤ (1 + ε)Dk+1, as clearly the
largest Dε

k+1 could possibly be is if all ANN distances were
exactly a (1 + ε) factor larger (the maximum allowed), in
which case the value at any rank would be exactly a (1 + ε)
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factor larger. Note, the actual point realizing Dε
k+1 may not

correspond to the one realizing Dk+1, though it does not
matter.

A.4 Additional Applications

Here we observe that the above results easily extend to other
natural variants.

Set-Partitioned Budgets. In Section 3.1 we considered
the version where we had separate insertion and deletion
budgets k and ℓ. Now consider the version where these in-
sertion and deletion budgets are further partitioned among
P and Q, i.e. as part of the input we are given kP , kQ,
ℓP , and ℓQ. Algorithm 3 immediately extends to this case
if we simply remove the for loops and directly compute
max{kcen(P ′, kP , ℓP ),kcen(Q

′, kQ, ℓQ)}, as indeed the pur-
pose of the loops was to guess the partition of k and ℓ into
kP , kQ, ℓP , and ℓQ. Thus we get an analogous version of
Theorem 9, though without the kℓ term in the running time.

For the problem where edits of either type are allowed
though the edits are partitioned among P and Q, i.e. we
are given kP and kQ, we can no longer assume there are no
deletions, i.e. Lemma 1 does not hold. However, in this case
we can simply modify the for loops in Algorithm 3 to guess
the partition of kP and kQ into deletions and insertions,
yielding an analogous version of Theorem 9, though where
the kℓ term in the running time is replaced with kP kQ.

Note that the version of the problem where edits are only
allowed to one side, say P , is now a special case of the prob-
lem where kQ = 0 (or kQ = 0 and ℓQ = 0). However, in
this case, since we are considering the r decision problem,
we must delete all points in P ′. Thus we can use k-center
rather than k-center with outliers (i.e. modify Algorithm 1
not Algorithm 3 ), yielding analogous versions of Theorem 7
and Theorem 8, where the k2 terms in the running times
improve to k.

Deletion Only Set-Partitioned Budgets. We can also
consider the variant of the deletion only problem where,
rather than being given a single deletion budget k, we are
given separate deletion budgets kP for P and kQ for Q. This
case is easily handled by modifying Algorithm 2. Specifi-
cally, there we had multisets DP and DQ, and we returned
the k + 1 largest element in DP ⊎ DQ. Instead, we simply
return the maximum of the kP + 1 largest element in DP

and the kQ + 1 largest element in DQ. The running time
and correctness of Lemma 10 and Corollary 11 still apply
with only superficial changes in the arguments.

As discussed in the introduction, [19] defined the Par-
tial Hausdorff Distance, where given parameters k and ℓ, we
want the maximum of the kth smallest value in {∥p−Q∥ | p ∈
P} and the ℓth smallest value in {∥q − P∥ | q ∈ Q}. This is
precisely the deletion only Hausdorff distance for parameters
n−k and m− ℓ, and in fact our proof of Lemma 10 formally
argues the equivalence of finding the value of a given rank
and the deletion only variant.

Substitutions. In this paper we allowed insertions and
deletions for our edits. One could also consider substitu-

tions of one point for another. However, this introduces
many possible variants, as then one must decide whether
they are shared or split edit budgets among P and Q, and
among the three possible operations.

Observe that a substitution can be viewed as a deletion
plus an insertion,8 which suggests that some of these variants
may be amenable to approximations using k-center cluster-
ing with outliers as done above. However, there are cases
where one may wish to perform an insertion (with no dele-
tion) over a substitution. In particular, this can occur when
any further substitution would require moving (i.e. deleting)
a point from P \ P ′ or Q \Q′. Thus depending on how the
budgets are shared or not the problem may become more
challenging, and may be a good direction to pursue for fu-
ture research.

8We assume the insertion and deletion both occur within P
or both within Q, though you could create even more variants,
where the insertion and deletion can occur in different sets.
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