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Fault-Tolerant Euclidean k-Centres*

Stephane Durocher� Sahar Lamey� Pak Ching Li�

Abstract

Given a set P of n points in Rd, the Euclidean k-centre
problem seeks to select a set F of k points in Rd such
that the maximum distance between any point in P
and its nearest neighbour in F is minimized, i.e., cover
P with k balls of minimum radius. Upon introducing
a parameter ℓ, the ℓ-fault-tolerant Euclidean k-centre
problem seeks to minimize the maximum distance from
any point in P to its ℓth nearest neighbour in F , i.e.,
select k balls of minimum radius such that each point
in P is contained in ℓ balls. We give an O(n logn)-
time algorithm that solves the ℓ-fault-tolerant k-centre
problem exactly in R. We show the problem is NP-hard
in R2, and give an O(nk/ℓ)-time algorithm that finds a
2-approximate solution.

1 Introduction

1.1 Motivation

Given positions for a set of clients, a facility location
problem seeks to identify positions for a multiset of fa-
cilities to serve the clients while optimizing a given cost
function on the relative positions of clients to facilities.
In the k-centre problem, the cost function is the maxi-
mum distance between any client and its nearest facility.
E.g., given the locations of 1000 houses, select where to
place 10 electric vehicle charging stations such that the
maximum distance between any house and its nearest
charger is minimized. Chargers are sometimes occupied
or out of service, which suggests including fault toler-
ance in the cost function. E.g., select where to place 10
chargers such that the maximum distance between any
house and its second-nearest charger is minimized.

1.2 Definitions

Let dist(u, v) denote the Euclidean (ℓ2) distance be-
tween the points u, v ∈ Rd. Equivalently, dist(u, v) is
the radius of the smallest ball centred at u that contains
v. Given a multiset S of points in Rd and a positive inte-
ger ℓ ≤ |S|, let distℓ(u, S) denote the distance from u to
its ℓth nearest neighbour in S. Equivalently, distℓ(u, S)
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is the radius of the smallest ball centred at u that con-
tains ℓ points of S. Let ℓ, k, and n denote integers such
that 1 ≤ ℓ ≤ k ≤ n, let P denote a set1 of n points in
Rd, and let F denote a multiset of k points in Rd. The
cost of F serving P with fault tolerance ℓ is

costℓ(P, F ) = max
p∈P

distℓ(p, F ). (1)

Expressed in the terminology of facility location, P is
a set of clients served by a multiset F of facilities.
Interpreted geometrically, each point in P is covered
by at least ℓ balls in the multiset of k balls of radius
r = costℓ(P, F ), centred on points in F . We examine
the problem of finding a multiset F that minimizes (1)
for given P , k, and ℓ.

Definition 1 (ℓ-fault-tolerant Euclidean k-centre)
An (optimal) ℓ-fault-tolerant Euclidean k-centre of P
is a multiset

F ∗ = argmin
|F |=k

costℓ(P, F ). (2)

A multiset F ′ is an α-approximate ℓ-fault-tolerant
Euclidean k-centre of P if costℓ(P, F

′) ≤ α·OPT , where
OPT = costℓ(P, F

∗). Interpreted geometrically, cover-
ing each point in P by ℓ balls centred on points in F ′

requires a radius at most α times larger than the radius
of balls centred on points in an optimal solution F ∗.

1.3 Contributions

In Section 4, we describe an O(n logn)-time algorithm
that solves the ℓ-fault-tolerant k-centre problem exactly
in R. In Section 5, we show the problem is NP-hard
in R2. In Section 6, we describe an O(nk/ℓ)-time al-
gorithm that finds a 2-approximate ℓ-fault-tolerant k-
centre in R2.

2 Related Work

When ℓ = 1, Definition 1 corresponds to the Euclidean
k-centre problem. I.e., the objective is to cover P with k
balls of minimum radius. The Euclidean k-centre prob-
lem is NP-hard when k is an arbitrary input parame-
ter [11] and d ≥ 2, remains NP-hard to approximate

1Whether P is a set or multiset of clients makes no difference
to the cost of a solution (1). Due to the fault-tolerance parameter
ℓ, however, an optimal solution to (2) may require collocating
points in F ; therefore, unlike P , F is a multiset.



37th Canadian Conference on Computational Geometry, 2025 184

Figure 1: A set P of eight points (blue), a Euclidean
4-centre of P (red □), a discrete 4-centre of P (purple),
and a 2-fault-tolerant Euclidean 4-centre of P (green ×)
with two facilities collocated on the left ×.

within a factor of (1 +
√
7)/2 ≈ 1.8229 [4], and has an

O(n log k)-time 2-approximation algorithm [4]. When
P ⊆ R (d = 1), the Euclidean k-centre problem can be
solved exactly in O(n logn) time [2].

The discrete k-centre problem examines the corre-
sponding problem (when ℓ = 1) in the graph setting,
where the metric space is limited to the set of graph
vertices. That is, facilities must be selected from the
set of clients: F ⊆ P . Conversely, in the Euclidean
k-centre problem, points in F may be positioned any-
where in Rd. The corresponding radii of covering balls
for these two versions of the k-centre problem can differ
by a factor of two (see Figure 1).

The ℓ-fault-tolerant discrete k-centre problem for ar-
bitrary 1 ≤ ℓ ≤ k has been examined on graphs whose
edge weights define a metric space, where the prob-
lem has been shown to be NP-hard, and for which no
polynomial-time (2−ϵ)-approximation algorithm is pos-
sible for any ϵ > 0 unless P=NP [8]. Chaudhuri et al. [1]
gave a polynomial-time 2-approximation algorithm.

As far as the authors are aware, nearly all previous
work on fault-tolerant k-centre problems considers the
discrete k-centre [1, 6, 8, 9]. The results in this paper
consider the ℓ-fault-tolerant Euclidean k-centre prob-
lem, in which the facilities are not restricted to be a
subset of the input point set, but can be any points in
Rd. Drezner [3] briefly examined the 2-fault-tolerant
Euclidean 2-centre problem (k-centre for unreliable fa-
cilities) and analyzed the example in Figure 2.

3 Geometric Properties

As with k-centres, an ℓ-fault-tolerant Euclidean k-centre
F ∗ is not unique in general, but costℓ(P, F

∗) (radius of
the covering balls) is equal for all F ∗ that minimize (2).
When ℓ > 1, an ℓ-fault-tolerant Euclidean k-centre is

a multiset that sometimes requires collocating multiple
facilities in F at a common point (see Figure 1). A nat-
ural strategy for identifying k points that approximate
an ℓ-fault-tolerant k-centre of P is to place ℓ points on

r∗

Figure 2: The set P of blue points has a 2-fault-tolerant
Euclidean 4-centre (green ×) of radius r∗; all Euclidean
2-centres of P have radius strictly greater than r∗ [3].

r∗
r

Figure 3: The set P of blue points has a 2-fault-
tolerant Euclidean 6-centre (green □) of radius r∗, but
all Euclidean 3-centres of P (e.g., red ×) have radius
r = (1/

√
3 + 1/2)r∗ ≈ 1.0774r∗.

each centre in a Euclidean ⌊k/ℓ⌋-centre of P . We ex-
amine this technique in Sections 4 and 6. As shown
by Drezner [3], this strategy does not give an optimal
ℓ-fault-tolerant Euclidean k-centre in R2 in general (see
Figures 2 and 3).

Observation 1 (Drezner 1987 [3]) ∃P ⊆ R2, k ∈
R+, ℓ ∈ R+ such that no Euclidean ⌊k/ℓ⌋-centre of P is
an ℓ-fault-tolerant Euclidean k centre of P .

Finally, collocating facilities of F on a k-centre of P
can result in costℓ(P, F ) that is arbitrarily larger than
r∗ = costℓ(P, F

∗) for an ℓ-fault-tolerant Euclidean k-
centre F ∗ of P . That is, a Euclidean k-centre cannot
guarantee any approximation of an ℓ-fault-tolerant Eu-
clidean k-centre when ℓ > 1 (see Figure 4).

Observation 2 ∀α ∈ R, ∃P ⊆ R2 such that |P | = 4
and cost2(P, F ) > α · OPT , where F is a Euclidean 4-
centre of P , F ∗ is a 2-fault-tolerant Euclidean 4-centre
of P , and OPT = cost2(P, F

∗).

4 1D Algorithm

In this section, we give an O(n log n)-time algorithm
for computing an optimal ℓ-fault-tolerant Euclidean k-
centre when the set P of clients is in R. The algorithm
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r∗

δ

Figure 4: The set P of blue points has a 2-fault-tolerant
Euclidean 4-centre of radius r∗ (green ×) with two facil-
ities collocated on the right ×. Setting F to a Euclidean
4-centre of P (F = P in this case) gives cost2(P, F ) = δ,
which can be arbitrarily larger than r∗.

computes an ⌊k/ℓ⌋-centre of P and outputs ℓ copies of
this solution.

Lemma 1 Given a set P of n points in R, and integers
k, ℓ such that 1 ≤ ℓ ≤ k ≤ n, if Z is an ℓ-fault-tolerant
Euclidean k-centre of P with dZ = costℓ(P,Z), then
there exists a multiset Y that is a Euclidean k′-centre
of P with cost1(P, Y ) ≤ dZ , where k′ = ⌊k/ℓ⌋.

Proof. Let Z = {{z1, z2, ..., zk}} be a multiset, where
z1 ≤ z2 ≤ · · · ≤ zk. Define Y = {{y1, y2, ..., yk′}}
where yi = ziℓ, for i = 1 to k′. Let p ∈ P . We will
now show that dist1(p, Y ) ≤ dZ . Since Z is an ℓ-fault-
tolerant k-centre of P with cost dZ , there exist (at least)
ℓ consecutive elements of Z that are within distance of
dZ from p. That is, there exists i such that dist(p, zj) ≤
dZ for j = i, i + 1, ..., i + ℓ. By definition of Y , one of
these zj is in Y . Therefore, dist1(p, Y ) ≤ dZ . □

Theorem 2 Given a set P of n points in R, and in-
tegers k, ℓ such that 1 ≤ ℓ ≤ k ≤ n, an optimal
ℓ-fault-tolerant Euclidean k-centre can be computed in
O(n log n) time.

Proof. Let k′ = ⌊k/ℓ⌋. The algorithm computes and
returns ℓ copies of S, a Euclidean k′-centre of P .

Let ALG denote the cost of the solution returned by
the algorithm and letOPT denote the cost of an optimal
solutionO. Note that the cost of the Euclidean k′-centre
solution S is ALG. By Lemma 1, we can obtain from
O a k′-centre solution C with cost at most OPT . Since
S is an optimal k′-centre with cost ALG, we see that
OPT ≥ ALG. Since ALG ≤ OPT by definition, we
conclude that ALG = OPT and the solution computed
by the algorithm is optimal.

The running time of the algorithm corresponds to
the time required to compute a k′-centre of P . When
P ⊆ R, a Euclidean κ-centre of P can be computed
in O(n logn) time for any κ, where n = |P | [2]. Con-
sequently, our algorithm computes an ℓ-fault-tolerant
Euclidean k-centre of P in O(n logn) time. □

t2 t2 t2

a) b) c)

Figure 5: Variable Gadget (true): These three con-
figurations of eight purple points stab each red or blue
disc with two points, as well as the dashed disc with two
points. Pairs of purple points are collocated in the sec-
ond and third configurations. The dashed disc is part
of a clause gadget.

f0 f1 f1

a) b) c)

Figure 6: Variable Gadget (false): These three con-
figurations of eight purple points stab each red or blue
disc with two points, but stab the dashed disc with only
one (f1) or zero (f0) points. Pairs of purple points are
collocated in the first configuration. The dashed disc is
part of a clause gadget.

5 2D Hardness

We show that the 2-fault-tolerant Euclidean k-centre
problem is NP-hard by describing a reduction from the
Planar 3-SAT problem. An instance Φ = (U,E) of 3-
SAT consists of a set of variables U = {u1, . . . , un} and
a set of clauses E = {E1, . . . , Es}. Each clause is the
disjunction of three literals, each of which is either a
variable in U or its negation, e.g., E1 = (u1∨¬u2∨u3).
The objective is to determine if there exists an assign-
ment of truth values to the variables in U such that all
clauses in E are satisfied (evaluate to true). Every in-
stance Φ of 3-SAT corresponds to a bipartite graph, GΦ,
with vertex set U ∪E, and an edge (ui, Ej) if and only
if the variable ui is in the clause Ej . Planar 3-SAT is a
restricted version of 3-SAT for which GΦ is planar. Pla-
nar 3-SAT is NP-complete [10]. Furthermore, for every
instance Φ of Planar 3-SAT, there exists a non-crossing
rectilinear embedding of GΦ in R2 [7].

We shall establish the NP-hardness of the Fault-
tolerant Euclidean k-centre problem by proving that
Disc 2-Stabbing is NP-hard. The input consists of a
set P ′ of unit discs in R2 and an integer k ≥ 1. The
objective is to determine if there exists a multiset F of
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k points such that each disc in P ′ contains (is stabbed
by) at least two points of F . If so, we say F 2-stabs
P ′, which occurs if and only if F is a 2-fault-tolerant
Euclidean k-centre of the set of centres of discs in P ′

with cost at most 1. That is, Disc 2-Stabbing reduces
directly to ℓ-fault-tolerant Euclidean k-centre.

We now reduce Planar 3-SAT to Disc 2-Stabbing.
Choose any instance Φ = (U,E) of Planar 3-SAT and a
rectilinear planar embedding of GΦ.

5.1 Variable Gadget

For each variable ui ∈ U , we construct a cycle of ri =
3mi overlapping discs that follows the edges adjacent to
ui in the drawing of GΦ, where mi is even (see Figures 5
and 6); let Ci = {Ci

0, C
i
1, ..., C

i
ri−1
} denote2 this set of

discs. Position the discs in Ci such that Ci
a ∩Ci

b ̸= ∅ if
and only if (a−b) mod ri ∈ {0, 1, 2}; that is, each disc in
Ci intersects two discs ahead and two discs behind it in
the cycle, but no other disc in Ci. Discs corresponding
to ui should not intersect discs corresponding to any
other variable uj (see Figure 11). That is,

∀i, j, ∀Ci
x ∈ Ci, ∀Cj

y ∈ Cj , i ̸= j ⇒ Ci
x ∩ Cj

y = ∅.

A simple counting argument shows that if |Ci| = 3mi,
then at least 2mi points are necessary to 2-stab Ci.
We begin by characterizing the possible 2-stabbing

sets of Ci using 2mi points and how these 2-stabbing
sets correspond to truth values for variables in the re-
duction.

Observation 3 If F ′ is a multiset of 2mi points that
2-stabs Ci, then each q ∈ F ′ must stab three discs in
Ci; furthermore, q ∈ Ci

j ∩ Ci
j+1 ∩ Ci

j+2 for some j.

Lemma 3 If F ′ is a multiset of 2mi points that 2-stabs
Ci, then ∀j ∈ {0, 1, ..., ri−1}, |Ci

j ∩ F ′| = 2.

Proof. By Observation 3, each point in F ′ stabs three
discs in Ci. Since |F ′| = 2mi, there are 6mi discs
(counting multiplicities) stabbed by F ′. Let D denote
the multiset of discs stabbed by F ′. Since F ′ is a 2-
stabber of Ci, each disc of Ci must occur at least twice
in D. As |D|/|Ci| = 2, we conclude that each disc of Ci

appears exactly twice in D. That is, each disc of Ci is
stabbed by exactly two points of F ′. □

With Observation 3 and Lemma 3, Lemmas 4 and 5 be-
low show that there are six combinatorially distinct con-
figurations of 2mi points that 2-stab Ci: three cases cor-
respond to the truth value True, and the other three cor-
respond to the truth value False (see Figures 5 and 6).

Lemma 4 Suppose F ′ 2-stabs Ci and |F ′| = 2mi.
Then for every j, qj ∩ F ′ = ∅, qj+1 ∩ F ′ = ∅, or
qj+2 ∩ F ′ = ∅, where qx ∈ Ci

x ∩ Ci
x+1 ∩ Ci

x+2.

2Indices are taken modulo ri. E.g., Ci
j denotes Ci

j mod ri
.

u1

u3

u2 E1

u1

u3

u2 E2

a) b)

× ≤ 5

Figure 7: Clause Gadget. Each clause Ei is repre-
sented by a central disc tangent to three adjacent discs
(black), each of which intersects the chain of discs cor-
responding to one of the three variables in the clause.
This example illustrates two clauses: E1 = u1 ∨ u2 ∨ u3

and E2 = u1 ∨ u2 ∨ ¬u3. To negate the truth value
of a variable, additional discs are added to the variable
chain on either side of the clause gadget to switch the
truth value of the variable where it intersects the black
disc. In this example, one additional disc is added to
each side of the green chain to negate u3 in E2. Since
the number of discs in each variable disc chain must be
a multiple of 6, additional discs may be required on the
other side of the intersection with the black disc.

Lemma 4 implies that F ′ cannot contain three points
that lie on consecutive intersections of three discs.

Proof. Suppose there is a j such that {qj , qj+1, qj+2} ⊆
F ′. Without loss of generality, assume j = 0. In this
case, |Ci

2 ∩ F ′| = 3, contradicting Lemma 3. □

Lemma 5 Suppose F ′ 2-stabs Ci, |F ′| = 2mi, and at
least one point occurs twice in F ′. Then every point
occurs twice in F ′.

Proof. Suppose some point qj occurs twice in F ′ and
some point qj′ occurs only once in F ′. Without loss of
generality, suppose j = 0, j′ > 0, and j′− j is minimum
among all such qj and qj′ , where qx ∈ Ci

x∩Ci
x+1∩Ci

x+2.
By Lemma 3, j′ ̸∈ {1, 2}. In order to stab the disc
Ci

3, F ′ must contain q3. Therefore, j′ = 3 and, by
assumption, q3 occurs only once in F ′. Consequently, F ′

cannot 2-stab the disc Ci
3, contradicting the assumption

that F ′ 2-stabs Ci. □

We now characterize all possible configurations
F ′ of 2mi points that 2-stab Ci. If F ′ con-
tains some point twice, then by Lemma 5 F ′ has
m distinct points, each of which appears twice
in F ′. By Lemma 3, F ′ must be the multiset
{{q0+j , q0+j , q3+j , q3+j , ..., qri−3+j , qri−3+j}}, for some
j ∈ {0, 1, 2}, corresponding to Figures 5(b), 5(c),
and 6(a), respectively. In our reduction, we associate
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a) b) c)

f1 t2f1 f0 t2 t2

no 2-stabber no 2-stabber no 2-stabber

d) e) f)

Figure 8: Adding three constraint discs (black) to each
variable gadget reduces the number of possible config-
urations from six to three; the configurations b, c, and
e can each be 2-stabbed with two additional points (or-
ange), but a, d, and f cannot.

the 2-stabbing set for j = 0, 1 with True and the 2-
stabbing set for j = 2 with False.

The only other possibility is that F ′ contains 2m dis-
tinct points. In this case, Lemmas 3 and 4 imply that
F ′ is the set {q0+j , q1+j , q3+j , q4+j , ..., qri−3+j , qri−2+j},
for some j ∈ {0, 1, 2}, corresponding to Figures 5(a),
6(b), and 6(c), respectively. In our reduction, we asso-
ciate the 2-stabbing set for j = 0 with True and the
2-stabbing set for j = 1, 2 with False.

Consequently, exactly six configurations are possible
for F ′. We further restrict the possible configurations
by adding three constraint discs to each literal’s chain
of discs, as illustrated in Figure 8. In three cases, two
of the constraint discs contain one or two points that
stab Ci, and two additional points are necessary and
sufficient to 2-stab all three constraint discs. In the re-
maining three cases, all three constraint discs are empty
and cannot be 2-stabbed by any two additional points.
Therefore, this reduces the number of possible configu-
rations to three. Position the three constraint discs such
that Figures 8c, e, and b correspond to Figures 5a, 5b,
and 6c, respectively. This allows negating a variable be-
fore it meets a clause gadget (if the variable is negated
in that clause) by adding discs (see Figure 7).

5.2 Clause Gadget and Reduction

We now describe the clause gadgets in our reduction.
Each clause Eh ∈ E is represented by four discs: one
central disc that intersects three other discs, each in a
point (see Figures 7 and 10). If the clause contains the
literal ui, then the corresponding clause gadget inter-
sect a disc Ci

j such that j mod 3 ∈ {0, 1}; if the clause
contains the literal ¬ui, then j mod 3 = 2. The index
j of the intersecting disc can be controlled by adding
discs (see Figure 7). If the assignment of a truth value
to ui implies that some point q ∈ Ci

j−1 ∩ Ci
j ∩ Ci

j+1 is
selected for the solution F , then q may be selected so

as to belong to the black disc as well. These correspond
exactly to configurations of points for true literals (see
Figure 5 and 6).

Observation 4 A clause gadget can be 2-stabbed by
two points if and only if at least one of its literals is
true. Furthermore, at least two points are required to
2-stab the clause gadget for every combination of truth
assignments to its literals.

Let Ψ denote the set
⋃n

i=1 C
i of discs in variable gad-

gets, along with the 4s discs for the s clauses in E, and
the 3n constraint discs for the n variables in U . Let

k = 2s+ 2n+ 2

n∑
i=1

mi. (3)

We now prove that E is satisfiable if and only if there
exists a set F of k points that 2-stabs Ψ. First, assume
that E is satisfied by a truth assignment Γ to U . For i ∈
{1, . . . , n}, if Γ(ui) = True, then add to F 2mi points
that 2-stab Ci as in Figure 5a. Otherwise, Γ(ui) =
False; add to F 2mi points as in Figure 6b. So far, |F | =
2
∑n

i=1 mi, and each set Ci of discs is 2-stabbed by F .
By our assumption, each clause Eh = ux ∨ uy ∨ uz is
satisfied; add to F two points per clause as in Figure 10
such that each clause’s set of four discs is 2-stabbed
by F . Finally, add to F two points per variable as in
Figure 8, such that each variable’s constraint discs are
2-stabbed by F . Therefore, |F | = k and F 2-stabs Ψ.

To prove the converse, assume F is a set of k points
that 2-stabs Ψ. We must show there exists a truth as-
signment Γ for U that satisfies E. By Observation 4,
at least 2s points of F are required to 2-stab the clause
gadgets and at least 2n points of F are required to 2-
stab the constraint discs for variable gadgets (excluding
points that 2-stab

⋃n
i=1 C

i) by (3); this leaves at most
2
∑n

i=1 mi points in F to 2-stab
⋃n

i=1 C
i. By Observa-

tion 3 and Lemmas 4 and 5, 2mi points are necessary in
F to 2-stab each Ci; furthermore, these correspond to
one of the configurations in Figures 5 or 6. That is, for
each Ci, F uniquely determines the truth assignment
Γ(ui) associated with that point configuration. By (3),
this leaves k − 2

∑n
i=1 mi = 2s + 2n points with which

to 2-stab the s clause gadgets (Figures 7 and 10) and
the n sets of variable constraint discs (Figure 8). Since
each clause gadget is 2-stabbed by F , by Observation 4,
each clause in E is satisfied. Since a rectilinear em-
bedding of GΦ exists on a grid of size 3s × 3s, where
s = |E| denotes the number of clauses in Φ [10], and
each unit length of each edge in the embedding can be
represented by a chain of O(1) unit discs, therefore the
reduction has polynomial size. See Figure 11 for an ex-
ample reduction. Given any set P ′ of unit discs and any
set F of points in R2, it is straightforward to verify in
polynomial time whether F 2-stabs P ′.
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Theorem 6 Disc 2-Stabbing is NP-complete.

Since every P ′ and F in R2 can be embedded in a flat
in Rd for any d ≥ 2, this gives the following theorem:

Theorem 7 For all d ≥ 2, the 2-fault-tolerant k-centre
problem is NP-complete in Rd.

6 2D Approximation Algorithm

In this section, we give a simple 2-approximation algo-
rithm based on the greedy k-centre approximation al-
gorithm of Gonzalez [5].

Algorithm 1: Computing an approximate ℓ-
fault-tolerant Euclidean k-centre solution

Input : A set P ⊂ R2 of n points, integers k, ℓ
satisfying 0 < ℓ ≤ k < n.

Output: A multiset of (at most) k points from
P .

1 k′ ← ⌊k/ℓ⌋
2 Select an arbitrary point s1 ∈ P .
3 S ← {s1}
4 i← 1
5 while |S| < k′ do
6 si+1 ← argmaxp∈P\S dist1(p, S)

7 ri ← dist1(si+1, S)
8 S ← S ∪ {si+1}
9 i← i+ 1

10 end
11 return ℓ copies of S

When ℓ = 1, Algorithm 1 is identical to the greedy 2-
approximation algorithm of Gonzalez [5], which in each
iteration locates a facility that is farthest from the fa-
cilities already selected. Line 7 of the algorithm is used
only for the analysis of the algorithm.

Theorem 8 Algorithm 1 is a 2-approximation for the
ℓ-fault-tolerant Euclidean k-centre problem.

Proof. Let k′ ← ⌊k/ℓ⌋ and S = {s1, s2, ..., sk′} be the
k′ centres selected by Lines 1–10 of Algorithm 1, where
si is the ith facility selected. The algorithm returns
ℓ copies of S and, therefore, the cost of the solution
returned is equal to the cost of the Euclidean k′-centre
solution S.

Let rk′ = cost1(P, S) and let sk′+1 be a point in P
that realizes rk′ . The value rk′ is the cost of the solution
returned by (Line 11) of the algorithm as each point in
S appears ℓ times in the solution. Since k < n, we have
k′ < n and, therefore, the point sk′+1 is distinct from
the points in S.

The values r1, . . . , rk′−1 computed in Line 7 and rk′

defined above satisfy r1 ≥ · · · ≥ rk′−1 ≥ rk′ . These

inequalities imply that any two points in S ∪ {sk′+1}
are at least a distance of rk′ apart.

Let OPT denote the cost of an optimal solution for
the ℓ-fault-tolerant k-centre instance. It suffices to show
that rk′ ≤ 2 ·OPT , which we show by contradiction.

Suppose rk′ > 2 ·OPT and let O be an optimal solu-
tion, where |O| = k. Consider any point p ∈ S∪{sk′+1}.
As p ∈ P , there must be at least ℓ facilities in O that are
within distance OPT from p. Since rk′ > 2·OPT and by
the triangle inequality, none of these facilities are within
a distance of OPT from any member of S∪{sk′+1}\{p}.
This implies that there must be at least (k′ + 1)ℓ > k
facilities in O, which is a contradiction. □

The running time of Algorithm 1 is dominated by
the nested loops on Lines 5 and 6 that iterate k′ and n
times, respectively, giving a worst-case running time of
Θ(nk′) = Θ(nk/ℓ). Figure 9 gives an example showing
that Algorithm 1 cannot guarantee any approximation
factor better than 2 in general.

Theorem 8 holds for both the discrete and contin-
uous versions of the ℓ-fault-tolerant k-centre problem
over any metric space.

7 Discussion and Directions for Future Research

7.1 Approximation by a ⌊k/ℓ⌋-Centre

Our example in Figure 3 shows that placing ℓ points
on each facility of a Euclidean ⌊k/ℓ⌋-centre of a set P
of points cannot guarantee an approximation for the ℓ-
fault-tolerant Euclidean k-centre better than (1/

√
3 +

1/2) ≈ 1.0774 in general. Theorem 8 shows that a 2-
approximation is possible. It remains open to determine
what approximation factors are possible in the range
[1/
√
3 + 1/2, 2). Our 2-approximation algorithm takes

O(nk/ℓ) time; it may be possible to apply techniques
similar to those used by Feder and Greene [4] to reduce
the running time to O(n log k).

7.2 Hardness of Approximation

We showed that the ℓ-fault-tolerant Euclidean k-centre
problem is NP-hard in two or more dimensions. Feder
and Greene [4] showed that the Euclidean k-centre
problem is NP-hard to approximate within a factor of
(1+
√
7)/2 ≈ 1.8229 in two or more dimensions. A simi-

lar hardness of approximation result likely holds for the
ℓ-fault-tolerant Euclidean k-centre, but remains open
at present. In fact, even without fault tolerance, it re-
mains open whether any polynomial-time algorithm can
guarantee an α-approximation of the Euclidean k-centre
problem for any α ∈ ((1 +

√
7)/2, 2) in R2. No such

gap exists for the discrete k-centre problem, for which a
polynomial-time 2-approximation exists, and it is NP-
hard to find a (2− ϵ)-approximation for any ϵ > 0 [5].
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A Appendix: Figures

p

Figure 9: In this example, the unique optimal 2-fault-
tolerant 2-centre has two facilities on ×, whereas Algo-
rithm 1 could place two facilities on p.
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Figure 10: Clause gadget configurations. The black
discs labelled f0 and f1 corresponds to false variables,
and contain zero or one points, respectively. The black
discs labelled t2 correspond to true variables, and con-
tain two points. Two additional points (purple) suffice
to 2-stab clause gadgets that have one or more true lit-
erals (b–d). No configuration of two points can 2-stab
a clause gadget with three false literals (a). Two purple
points are collocated in the left configuration of (c).

u1

u3

u2 E1

u4

E2

u1

u3

u2 E1

u4

E2

Figure 11: Given a rectilinear planar embedding of Gϕ

(left), we replace the edges adjacent to each variable
in U with a cycle of overlapping discs (right) and each
clause in E with four discs (black) that overlap the three
cycles of discs corresponding to variables in that clause.
Each variable also has one set of three constraint discs
(purple). This example illustrates the reduction for an
instance consisting of the clauses E1 = u1 ∨u2 ∨u3 and
E2 = u1 ∨ u3 ∨ u4.
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