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The Orthogonal Two-Line Center Problem*

Taehoon Ahn� Sang Won Bae� Sang Duk Yoon§

Abstract

Given a set of n points in the plane, the two-line center
problem asks to find two lines that minimize the max-
imum distance from each point to its closer line. The
best known algorithm for the problem takesO(n2 log2 n)
time, presented by Jaromczyk and Kowaluk in 1995. In
this paper, we consider the orthogonal two-line center
problem, a constrained version of the two-line center
problem in which two resulting lines should be orthog-
onal. We present an O(n2 log n) time algorithm using
only O(n) space.

1 Introduction

In the two-line center problem, we are given a set P of
n points in R2 and want to find two lines that min-
imize the maximum distance to the closer line from
each p ∈ P . The first subcubic O(n2 log5 n)-time algo-
rithm for the problem was presented in 1991 by Agar-
wal and Sharir [3]. Later in 1995, Jaromczyk and
Kowaluk [15] improved it to O(n2 log2 n) time, and it
still remains the best known algorithm until now. See
also Katz and Sharir [16] and Glozman et al. [14] for
other approaches to the problem.
Whereas no progress on the problem has been made

for the last three decades, there has been effort to
achieve better running times for variants of two-line cen-
ter problem with additional constraints. Bae [8] pre-
sented an algorithm that runs in O(n2) time for the
parallel two-line center problem, in which two resulting
lines should be parallel. Very recently, Ahn and Bae [5]
studied orientation-constrained versions of the two-line
center problem, and presented efficient algorithms with
running times: O(n log n) time when both resulting
lines should have fixed orientations, O(n log3 n) time
when one of them should have a fixed orientation, and
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O(n2α(n) log2 n) time when the angle between two re-
sulting lines is fixed, where α(n) denotes the inverse
Ackermann function.

Along this line of research, in this paper, we study
the orthogonal two-line center problem, in which we
consider an additional constraint that the two result-
ing lines should be orthogonal. Our main contribution
is a new algorithm for the orthogonal two-line center
problem, which takes O(n2 log n) time and O(n) space.
Note that the orthogonal two-line center problem is a
special case of the fixed-angle two-line center problem,
described above as the third variant of Ahn and Bae [5],
whose algorithm makes use of the arrangement of n dual
lines via the point-to-line duality and therefore requires
O(n2) space. Thus, our algorithm improves the previ-
ous one both in time and space for the orthogonal case.

Related work. Generalizing two-line center problem,
the k-line center problem is to find k lines that opti-
mally cover a given set P of points in the plane. Notice
that the k-line center problem is equivalent to the prob-
lem of finding k strips of minimum width whose union
encloses input points P . The 1-line center problem is
known as the width problem, and it can be solved in
O(n) time after computing the convex hull of P [18].
In R3 or higher dimensions, Agarwal and Sharir [4]
showed that the width of n points in R3 can be com-
puted in O(n3/2+ϵ) expected time, and Chan [10] dis-
cussed an O(n⌈d/2⌉)-time algorithm in Rd for d ≥ 4. For
the two-line center problem in R2, the exact algorithms
are known as mentioned earlier, and when the points
are given in Rd for d ≥ 3, an efficient approximation
algorithm for two-line center is presented by Agarwal et
al. [1]. The general k-line center problem is known to
be NP-hard when k is a part of input [17] even in R2,
while an efficient approximation algorithm is known [2].

In addition to the previous research [5, 8] introduced
above, more results on variants of the k-line center prob-
lem and their extensions to higher dimensions have re-
cently been studied. Das et al. [12] presented an ap-
proximation algorithm for the axis-aligned k-line center
problem in which resulting lines should be either hor-
izontal or vertical. Chung et al. [11] presented algo-
rithms that compute k parallel strips of best separabil-
ity, enclosing a given planar set of points. Ahn et al. [6]
presented algorithms computing two parallel slabs en-
closing points in Rd for d ≥ 3.
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Due to space limit, proofs are omitted.

2 Preliminaries

Let P be a given set of n points in the plane R2. We
assume that the points in P are in general position;
that is, no three points of P lie on a common line. We
consider the standard Cartesian coordinate system of R2

with the horizontal x-axis and the vertical y-axis. For
each point p ∈ R2, we use x(p) and y(p) to denote its
x- and y-coordinates, respectively.

We say that the orientation of a line is θ ∈ [0, π)
(modulo π) if θ is the counterclockwise angle from the
x-axis to the line. A line of orientation θ may have a
direction ϕ ∈ [0, 2π), where ϕ = θ or ϕ = θ + π. For a

point p ∈ R2, we use ℓ⃗ϕ(p) to denote the line in direction
ϕ that goes through p. A half-line (or a ray) starting at

p in direction ϕ is the subset of ℓ⃗ϕ(p) consisting of all
points on the line but those prior to p in direction ϕ.

A strip σ is the closed region bounded by two parallel
lines, and its orientation is determined as that of its
bounding lines. The width of strip σ, denoted by w(σ),
is the distance between its two bounding lines. For any
subset Q ⊆ P , we denote by σθ(Q) the minimum-width
strip of orientation θ that encloses Q.

Note that the orthogonal two-line center problem is
equivalent to the problem of finding a pair of orthogonal
strips that encloses P such that the width of the wider
strip is minimized. For a pair of orthogonal strips σ1

and σ2, we call the union C = σ1 ∪ σ2 of the strips a
cross. The orientation of cross C is meant to be θ for
θ ∈ [0, π/2) if the orientations of σ1 and σ2 are θ and
θ+π/2, respectively. The width of cross C is defined by
w(C) = max{w(σ1),w(σ2)}. The four bounding lines
of σ1 and of σ2 are also called bounding lines of C.

Consider any cross C of orientation θ. The comple-
ment R2 \C consists of four quadrants bounded by half-
lines of orientation θ or θ+ π/2. We denote each of the
four quadrants by Qi(C) for i ∈ {0, 1, 2, 3} and two
bounding half-lines of Qi(C) by h2i(C) and h2i+1(C)
in direction θ + iπ/2 and θ + (i + 1)π/2, respectively.
We simply write Qi or hj for indices 0 ≤ i ≤ 3 and
0 ≤ j ≤ 7 instead of Qi(C) or hj(C), if it is understood
from the context. See Figure 1(a).

3 Data structures

In this section, we describe data structures which will be
maintained in our algorithm. We call a cross C = σ1∪σ2

of orientation θ minimal if σ1 = σθ(P \ σ2) and σ2 =
σθ+π/2(P \σ1). If C is minimal, then each bounding line
of C contains a point of P unless P ⊂ σ1 or P ⊂ σ2.
It is obvious that there exists a minimum-width cross
enclosing P that is minimal.
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Figure 1: (a) A cross C of orientation θ and its four
quadrants Q0, Q1, Q2, and Q3. Each quadrant Qi is
bounded by two half-lines h2i and h2i+1. (b) Illustration
of OHθ. It consists of four staircases: stθ, stθ+π/2, stθ+π,
and stθ+3π/2.

Let Kp for p ∈ R2 be the quadrant with apex p
bounded by two rays emanating from p, one horizontally
to the left and the other vertically downwards. Consider
the union of Kp over all p ∈ P , and the polygonal chain
from the topmost point of P to the rightmost one of P
along the boundary of the union of quadrants. This rec-
tilinear chain, consisting only of horizontal and vertical
segments, is called the staircase of P . Note that the
staircase can be degenerated to a single point p ∈ P ,
when x(p) > x(q) and y(p) > y(q) for all other points
q in P . Let stθ for θ ∈ [0, 2π) denote the staircase of P
with the axes rotated by θ in the counterclockwise di-
rection.

For any θ ∈ [0, 2π), consider the staircase stθ in ori-
entation θ and let p0, . . . , pk ∈ stθ be the points of P
lying on stθ in this order. Note that p0 is the topmost
point of P and pk is the rightmost point of P with the
axes rotated by θ. A portion of rectilinear chain stθ be-
tween two consecutive points pi−1 and pi is called a step.
In general, the i-th step between pi−1 and pi consists of
the vertical segment from pi−1 down to the point vi with
coordinates x(vi) = x(pi−1) and y(vi) = y(pi) and the
horizontal segment between vi and pi. Note that such
a step can be degenerated to a segment, either horizon-
tal or vertical, when pi−1 and pi have the same x- or
y-coordinate. We call vi the vertex of the i-th step.

For each θ ∈ [0, π/2), the four staircases stθ, stθ+π/2,
stθ+π, and stθ+3π/2 form the well-known orthogonal con-
vex hull of P with the axes rotated by θ, denoted
by OHθ, and the set of points p ∈ P lying on the four
staircases is called the maxima of P in orientation θ.
See Figure 1(b). By a slight abuse of notation, the stair-
case stθ is also considered as a sequence of points p ∈ P
lying on it, and we also mean by OHθ the union of the
four staircases stθ+iπ/2 for i ∈ {0, 1, 2, 3}.
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Figure 2: The orthogonal convex hull of the 13 points
p0, ..., p12. For each step pipi+1 of st0 where û is pipi+1,
the gray arrows indicate the targets of p1u, p

2
u, and p3u.

The information we maintain for each step of st0 is sum-
marized in the table on the right.

The following observation is immediate.

Lemma 1 For a cross C of orientation θ that en-
closes P , any point of P lying on the boundary of Qi(C)
lies on stθ+iπ/2 for i ∈ {0, 1, 2, 3}.

This suggests a natural approach to tackle the prob-
lem by maintaining OHθ while θ increases from 0 to π/2.

Description of data structures. Now, we introduce
our data structures that maintain OHθ over θ ∈ [0, π/2)
and also that supports a specific type of queries for our
later purpose. More precisely, let T0, . . . , T3 be four bal-
anced binary search trees such that Ti stores the steps
of stθ+iπ/2 at its leaf nodes in the order along the stair-
case stθ+iπ/2. We add internal pointers between two
consecutive leaf nodes so that we can visit the leaf node
preceding or succeeding a given leaf node of Ti in O(1)
time. We denote by û the step stored at a leaf node u.
Additionally, we maintain three external pointers pju

for j ∈ {1, 2, 3} to a leaf node of Ti+j (the index of
the trees is taken by modulo 4). Precisely, suppose the
current Ti’s represent OHθ for θ ∈ [0, π/2). Let u be a
leaf node of Ti and v be the vertex of the step û stored
at u. We then store three external pointers at node u.

1. p1u points to the leaf node u1 of Ti+1 such that the
ray from the vertex v of û in direction θ+ iπ/2+π
hits û1. If there is no such step (and no such leaf
node u1), then p1u points to null.

2. p2u points to the leaf node u2 of Ti+2 such that the
ray from v in direction θ + iπ/2 + 5π/4 hits û2. If
there is no such step (and no such leaf node u2),
then p2u points to null.

3. p3u points to the leaf node u3 of Ti+3 such that the
ray from v in direction θ + iπ/2 + 3π/2 hits û3. If
there is no such step (and no such leaf node u3),
then p3u points to null.

Roughly speaking, these external pointers enable us in
O(1) time to shoot a ray of a specific direction from the

vertex of a step of one staircase to the others at the
current orientation θ. See Figure 2 as an example.

In the following, we show how to maintain the four
tree structures Ti as θ increases from 0 to π/2.

Events. As θ increases, our trees Ti, including the
pointers, undergo changes in their structures and val-
ues storing in them. We distinguish such changes into
two types of events:

� Hull events occur when the combinatorial structure
of OHθ changes. There are again two different types
of changes: when a point is added to or removed
from OHθ or when an overlap between two opposite
staircases is created or destroyed. Note that two
opposite staircases stθ and stθ+π may overlap and
hence OHθ introduce a self-crossing.

� Pointer events correspond to changes of point-
ers pju. Such an event occurs exactly when the cor-
responding ray of pju for some leaf node u of Ti and
j ∈ {1, 2, 3} hits a point on OHθ, and thus its desti-
nation needs to be updated. A pointer event is as-
sociated with its occurring orientation ϕ ∈ [0, π/2),
the corresponding leaf node u and pointer pju.

From previous work on maintaining OHθ, we can pre-
compute all hull events.

Lemma 2 ( [7, 9, 13]) There are at most O(n) hull
events and all hull events can be computed in O(n logn)
time using O(n) space.

v
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pk
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Figure 3: The line ℓ containing the ray from v in di-
rection θ + π/4 always goes through v regardless of θ.
(a) v ̸= pk and v ̸= pk+1, (b) v = pk, (c) v = pk+1.

Predicting pointer events can be done as follows. Sup-
pose the tree structures Ti together with the pointers are
correctly maintained until θ = θ0 ∈ [0, π/2). Fix a leaf
node u of Ti. For each j ∈ {1, 2, 3}, let uj be the leaf
node of Ti+j such that pju points to uj . At this moment,
we can compute the possible pointer event correspond-
ing to the next change of pju after θ0, which we will call
the candidate event for pju, denoted by PECandj(u, θ0).
Below, we assume i = 0 without loss of generality, as
the other cases i = 1, 2, 3 can be handled symmetrically.

1. For p1u, its corresponding ray γ hitting û1 emanates
from the vertex v of û in direction θ0 + π, unless
it points to null. Though the vertex v moves as θ
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varies, observe that the line extending the corre-
sponding ray γ from v always goes through one of
the two endpoints of û, say p ∈ P . Hence, we can
precompute when the ray γ hits one of the end-
points of û1 and which leaf node neighboring u1

will be the next target of p1u, unless there is a hull
event beforehand. This constitutes the candidate
event for p1u after θ0, that is, PECand1(u, θ0).

2. For p2u, its corresponding ray γ hitting û2 emanates
from the vertex v of û in direction θ0+5π/4, unless
it points to null. Consider the two endpoints p1 and
p2 of û and the circle O with diameter p1p2. Let
p′ be the midpoint of the circular arc between p1
and p2 that avoids v. Let ℓ be the directed line
extending γ. As θ increases, γ and ℓ move. In
this case, we observe that ℓ rotate around a fixed
point p′ as well: Since the step û makes the right
angle at v, v moves along the circle O as θ varies.
Now observe that the line ℓ bisects the right angle
at v, since ℓ is in direction θ + 5π/4. So, ℓ always
goes through p′ by the inscribed angles of circles.
See Figure 3. Hence, we can compute the candidate
event PECand2(u, θ0) for p

2
u after θ0.

3. The case of p3u is similar to that of p1u.

As described above, we can compute in O(1) time
the candidate pointer event PECandj(u, θ0) for each
pointer pju at a specific moment θ0.
Our algorithm to maintain the trees Ti is run by prop-

erly handling events. As a preprocessing, we compute
hull events by Lemma 2 and insert them into a priority
queue, called the event queue. We then initialize the
Ti’s for θ = 0 as follows:

Initialization. First, we compute the four stair-
cases st0, stπ/2, stπ, and st3π/2, and so OH0. We then
build Ti for all i ∈ {1, 2, 3, 4} with the internal point-
ers. Observe that when traversing the leaf nodes u of
Ti along the internal pointers, the leaf nodes in Ti+j

pointed by pju also change along the internal pointers
of Ti+j for j ∈ {1, 2, 3}. Thus, all external pointers
can be computed in O(n) additional time. This takes
O(n log n) time using O(n) space in total.

Next, we compute the candidate pointer event
PECandj(u, 0) for each external pointer pju, and insert
it into the event queue. Since there are O(n) leaf nodes
in total, this can be done in additional O(n logn) time.
Note that the number of (candidate) events stored in
the event queue is bounded also by O(n).

Handling the next event. Our algorithm then extract
the next event from the event queue and handle it cor-
rectly to maintain the invariants. Let ϕ be the orienta-
tion of the next event extracted from the event queue.

If it is a pointer event PECandj(u, θ0), we perform
the following. Note that the event was a candidate event

for pointer pju at the moment θ = θ0. This pointer event
is associated with the next target leaf that pju should
point after ϕ. Hence, updating pju can be done in O(1)
time with the access to the node u. Then, we compute
a new candidate event PECandj(u, ϕ) for pointer pju
after ϕ as described above, and insert it into the event
queue. This completes the procedure to handle a pointer
event, spending O(logn) time.

For the total number of pointer events handled, we
prove the following.

Lemma 3 The total number of pointer events created
and handled during the execution of the algorithm is
bounded by O(n2).

Therefore, all pointer-event-related operations can be
done in O(n2 log n) time.
Next, consider the case of a hull event. By Lemma 2,

there are only O(n) hull events. So, we can handle each
hull event in a brute force way: reinitialize the structure
for θ = ϕ as described above. This spends O(n log n)
time per hull event, and so O(n2 log n) time in total.

Therefore, we conclude the following.

Lemma 4 As θ increases from 0 to π/2, we can main-
tain the tree structures Ti for 0 ≤ i ≤ 3 with the pointers
in total O(n2 log n) time using O(n) space.

Querying crosses. While the trees Ti are being main-
tained, we can test whether a given cross encloses P .

Lemma 5 At any moment θ ∈ [0, π/2), while main-
taining the Ti’s as above, we can decide if any given
cross of orientation θ encloses P in O(logn) time.

4 Algorithm

Now we present an algorithm to compute a minimum-
width minimal cross. First, we observe the following.

Lemma 6 Let C = σ1 ∪ σ2 be a minimum-width mini-
mal cross. Exactly one of the following is true:

� w(σ1) > w(σ2) and one of the bounding lines of σ1

contains two points of P on the boundary of C.

� w(σ1) < w(σ2) and one of the bounding lines of σ2

contains two points of P on the boundary of C.

� w(σ1) = w(σ2).

Using Lemma 6, we present two different algorithms
for computing a minimum-width cross, depending on
whether one of the bounding lines of the cross contains
two points of P on the boundary of the cross, or each
of the bounding lines of the cross contains exactly one
point of P on the boundary of the cross. Both of the
algorithms work by increasing θ from 0 to π/2 and main-
taining the trees Ti.
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4.1 When one of the bounding lines contains two
points

In this section, we present an algorithm that computes
a minimum-width cross when one of its bounding line
contains two points of P on its boundary. Let C =
σ1 ∪ σ2 be the cross of orientation θ ∈ [0, π/2) such
that the orientation of σ1 is θ. We assume that the
upper bounding line of σ1 contains two points of P on
the boundary of C and w(σ1) ≥ w(σ2), since the other
cases can be handled symmetrically. By Lemma 1, both
of the points on the bounding line appear on OHθ.

Consider two points p1 and p2 of P such that both
of the points are on OHθ and the line ℓ going though
p1 and p2 is of orientation θ for some θ ∈ [0, π/2). Let
C(p1, p2) = σ1∪σ2 be the minimal cross with minimum
width of orientation θ such that the upper bounding line
of σ1 is ℓ and w(σ1) ≥ w(σ2). Note that there is a point
on the lower bounding line of σ1 that appears in OHθ

by Lemma 1. We can compute C(p1, p2) with our data
structures at θ as follows. Let q1, . . . , qk be the points
of P on OHθ lying below ℓ, ordered in the decreasing
order of y-coordinate in the coordinate system rotated
by θ. For each index 1 ≤ j ≤ k, we define σ1(j) =
σθ({p1, qj}) and σ2(j) = σθ+π/2(P \ σ1(j)). Observe
that as j increases, w(σ1(j)) increases while w(σ2(j)) is
non-increasing. Therefore, by finding the smallest index
j such that w(σ1(j)) ≥ w(σ2(j)), we obtain C(p1, p2) =
σ1(j) ∪ σ2(j).

For a fixed qj , w(σ1(j)) can be computed trivially
in O(1) time. To compute w(σ2(j)), we must find the
point qM with the maximum x-coordinate and the point
qm with the minimum x-coordinate in P \ σ1(j), in the
coordinate system rotated counterclockwise by θ. Let
pM be the point in P with the maximum x-coordinate.
If σ1(j) does not contain pM , then qM = pM . Other-
wise, the value x(qM ) is determined by the intersection
OHθ ∩ ℓ or OHθ ∩ ℓ′, where ℓ′ is the line of orientation
θ passing through qj . The intersection OHθ ∩ ℓ can be
found in O(1) time via the step containing p1 and the
external pointer of the node storing that step. Like-
wise, the intersection OHθ ∩ ℓ′ can be found in O(1)
time. Thus, x(qM ) can be computed in O(1) time, and
by a similar argument, x(qm) can also be computed in
O(1) time. Hence, w(σ2(j)) can be computed in O(1)
time. We observe that the steps containing q1, . . . , qk
are stored in the trees Ti for i ∈ 0, 1, 2, 3 at orientation
θ, ordered in their y-coordinates. Therefore, by apply-
ing the binary search on the trees Ti, we can compute
C(p1, p2) in O(log n) time.

As θ increases from 0 to π/2, the orientation when
two points p1 and p2 of P on OHθ lie on a line of orien-
tation θ corresponds to either a hull event or a pointer
event. More specifically, if p1 and p2 belong to the same
staircase, the event is a hull event; otherwise, it is a
pointer event. The total number of tree and pointer

events is O(n2), and for each event, the corresponding
cross C(p1, p2) can be computed in O(log n) time. No
additional data structures are required beyond the trees
Ti. Thus, by Lemma 4, we can conclude the following.

Lemma 7 We can compute a minimum-width cross
with one of the bounding line containing two points of P
on the boundary of cross in O(n2 log n) time and O(n)
space.

4.2 When each of the bounding lines contains ex-
actly one point

In this section, we present an algorithm that computes
a minimum-width cross such that each of the bounding
lines contains exactly one point of P on the boundary
of the cross. Then it consists of the strips of the same
width by Lemma 6. Let Cθ(p, q, r, s) be the cross of
orientation θ ∈ [0, π/2) such that

� p and q lie on the upper and lower bounding line of
the strip of orientation θ, respectively, and

� r and s lie on the left and right bounding line of
the strip of orientation θ + π/2

for p, q, r, s ∈ P . By definition, Cθ(p, q, r, s) =
σθ({p, q}) ∪ σθ+π/2({r, s}). Since w(σθ({p, q})) and
w(σθ+π/2({r, s})) are both sinusoidal functions of θ,
they are equal for at most one or for all θ ∈ [0, π/2).

(a) (b) (c) (d)

p p p p

q q q q

rr

r

r
s

s

s

s

Figure 4: Four types of cross: (a) type 1, (b) type 2, (c)
type 3, and (d) type 4.

Consider a cross C = Cθ(p, q, r, s) such that p, q, r,
and s are the only points of P lying on the boundary
of C. Then we can classify C into following four types
under the symmetry group. See Figure 4.

1. p ∈ h0(C), q ∈ h7(C), r ∈ h2(C), and s ∈ h1(C).

2. p ∈ h0(C), q ∈ h7(C), r ∈ h2(C), and s ∈ h6(C).

3. p ∈ h0(C), q ∈ h4(C), r ∈ h5(C), and s ∈ h1(C).

4. p ∈ h0(C), q ∈ h4(C), r ∈ h2(C), and s ∈ h6(C).

There can be 24 = O(1) different configurations with
respect to the position of p, q, r, and s on the boundary
of C, but since each of them can be transformed into one
of the following four types under the rotation and reflec-
tion, we present an algorithm computing a minimum-
width cross belonging to one of the types above. Other
case can be handled symmetrically.

Lemma 8 There is no minimum-width cross of type 4.
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By Lemma 8, we only have to consider the crosses of
type 1, 2, and 3. By Lemma 1, if a cross C of orientation
θ and type i ∈ {1, 2, 3} encloses P , then the point of P
lying on h0(C) is on stθ.

For each point p ∈ P on stθ and i ∈ {1, 2, 3}, we define
Ci

θ(p) of orientation θ and type i such that p is the point
of P on h0(C

i
θ(p)) which may be a minimum-width cross

as follows.

Definition of C1
θ (p). If p is the leftmost point of stθ,

C1
θ (p) is not defined. Otherwise, let s1θ(p) be the point

of P on stθ making the step together with p on the left
side of p. Let u be the leaf node of T0 such that û is
the step. We set r1θ(p) to be the point incident to the
step pointed by p1u on the upper side. If p1u points to
null, we set r1θ(u) to be the point of P at stθ+π/2∩stθ+π.
We also set q1θ(p) to be the point incident to the step
pointed by p3u on the right side. If p3u points to null, we
set q1θ(p) to be the point of P at stθ+π ∩ stθ+3π/2. Then
C1

θ (p) := Cθ(p, q
1
θ(p), r

1
θ(p), s

1
θ(p)).

Definition of C2
θ (p). We first give following observa-

tion on a minimum-width cross of type 2.

Lemma 9 If C = Cθ(p
′, q′, r′, s′) is a minimum-width

cross of orientation θ and type 2, then q′ has the larger
x-coordinate than p′ in the coordinate system rotated by
θ in counterclockwise direction.

Note that if Cθ(p
′, q′, r′, s′) is a cross of orientation θ and

type 2 enclosing P , q′ and s′ makes a step in stθ+3π/2.
Moreover, Lemma 9 implies that the ray from p′ in di-
rection θ + 3π/2 hits stθ+3π/2 at the step of q′ and s′.
Now we define C2

θ (p). Let u and u′ be the steps of stθ
incident to p on the left and right, respectively. Then
we set r2θ(p) to be the point incident to the step pointed
by p1u on the upper side, If p1u points to null, we set
r2θ(u) to be the point of P at stθ+π/2 ∩ stθ+π. We set
q2θ(p) and s2θ(p) to be the points incident to the step
pointed by p3u′ on the upper and lower side, respectively.
If p3u′ points to null, C2

θ (u) is not defined. Otherwise,
C2

θ (p) := Cθ(p, q
2
θ(p), r

2
θ(p), s

2
θ(p)).

Definition of C3
θ (p). Assume that there is a cross

C = Cθ(p
′, q′, r′, s′) which is a minimum-width cross

of orientation θ and type 3. Then the step of s′ and p′

is present at stθ, and the step of r′ and q′ is present at
stθ+π. Let v be the vertex of the step of s′ and p′, and
v′ be the vertex of the step of r′ and q′. Then v is also
the vertex of Q0(C) and v′ is also the vertex of Q2(C).
Since C consists of strips of the same width, the line
going through v and v′ is of orientation θ + π/4.
Now, we define C3

θ (p). If p is the leftmost point of stθ,
C3

θ (p) is not defined. Otherwise, let s3θ(p) be the point
of P on stθ making the step together with p on the left
side of p. Let u be the leaf node of T0 such that û is the

step. Then we set q3θ(p) and r3θ(p) to be the points of P
incident to the step pointed by p2u on the right and left,
respectively. If p2u points to null, C3

θ (p) is not defined.
Otherwise, C3

θ (p) := Cθ(p, q
3
θ(p), r

3
θ(p), s

3
θ(p)).

Algorithm. As θ increases, we handle cross events to
find a minimum-width cross. Cross events occur at θ
when two strips of Ci

θ(p) for some p on stθ and i ∈
{1, 2, 3}. The detailed algorithm is as follows.

When θ = 0 and whenever a hull event occurs, we
compute qiθ(p), riθ(p), and siθ(p) for all p on stθ and
i ∈ {1, 2, 3} as an initialization. We define θi(p) to be
the orientation in [0, π/2) such that the widths of the
cross Ci

θ(p) are equalized at θ = θi(p) for p ∈ P on
stθ and i ∈ {1, 2, 3}. If Ci

θ(p) is not defined, no such
orientation exists, or the widths are the same for all
orientation in [0, π/2), θi(p) is not defined. We maintain
all the θi(p) values that is larger than current θ into a
cross event queue in the form of priority queue.

When θ reaches θi(p) for some p and i, we handle
the cross event. In the cross event, we test whether
Ci

θ(p) encloses P . This can be done in O(logn) time
by Lemma 5. If it encloses P , we consider Ci

θ(p) as
a candidate of a minimum-width cross. By reporting a
candidate cross with the minimum width, the algorithm
correctly computes a minimum-width cross.

For each hull event, computing qiθ(p), r
i
θ(p), and siθ(p)

for i ∈ {1, 2, 3} takes O(1) time for each p. Then
we compute the cross event queue of O(n) values ac-
cordingly, which takes O(n log n) time. Thus, it takes
O(n2 log n) time in total for hull events.

For each pointer event, let u be the leaf node in T0
such that its external pointer is updated in the pointer
event, and let p1, p2 ∈ P be the points making the step
û. Then qiθ(p), r

i
θ(p), and siθ(p) for p ∈ {p1, p2} and i ∈

{1, 2, 3}might be changed. Then we update θi(p) values
accordingly, and update the cross event queue. Since we
only update O(1) values at once, it takes O(log n) time
for each pointer event. Therefore, it takes O(n2 log n)
time in total for pointer events.

Since O(n) new θi(p) values are updated for each hull
event, and O(1) new values are updated for each pointer
event, there O(n2) cross events occur in total. More-
over, since we store O(1) values for each p ∈ P on stθ
in the cross event queue, it uses O(n) space. Therefore,
together with Lemma 4, we have the following.

Lemma 10 We can compute a minimum-width cross
with each of the bounding line containing exactly one
point of P on the boundary of cross in O(n2 log n) time
and O(n) space.

By Lemma 7 and 10, we conclude the following.

Theorem 11 For a set P of n points in R2, we can
compute a minimum-width cross in O(n2 log n) time
and O(n) space.
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