
197 CCCG 2025, Toronto, Canada, August 13–15, 2025

Covert Computation in the Prebuilt aTAM*

Timothy Gomez� Robert Schweller� Tim Wylie�

Abstract

We prove several results related to the concept of hid-
den computation in the most well-known model of self-
assembly, the Abstract Tile-Assembly Model (aTAM).
Previous work showed that the aTAM, with negative
glues and no detachment, or in 3D, is capable of covert
computation. Without negative glues, the aTAM is still
capable of covert computation, but it only seems pos-
sible with exponential-sized output assemblies. Here,
we show that with a constant number of constant-
sized prebuilt assemblies, covert computation is possi-
ble. Further, we use this to show that the fundamental
self-assembly problem of Unique Assembly Verification
(UAV) in the prebuilt aTAM is coNP-complete, which
is in contrast with UAV in the standard aTAM, which
is polynomial. Finally, we look at the polyTAM and
prove that Producibility is in P and UAV is FPT with
respect to the size of the polytiles in the tile set.

1 Introduction

With the ability to manufacture nanoscale structures
and to use DNA as building blocks for structures [24]
or for data storage [11], there has been a great increase
in the need to process and compute information at the
same level. Thus, the study of self-assembling computa-
tion has been an important and active area of research
over the last two decades.
Designing self-assembling systems that compute func-

tions is an active and well-studied area of computa-
tional geometry and biology [5, 19]. The ability to
craft monomers capable of placing themselves, espe-
cially when doing precision construction and computa-
tion at scales where conventional tools are incapable of
operating, (e.g., the nanoscale) has tremendous power.
One of the few downsides to self-assembly computation
is that the entire history of the computation is visible.
In certain cases, this may be undesirable for privacy
or security reasons, which we motivate below. Thus,
we build on recent work [3, 7, 8, 10] to explore covert
computation, where we build Tile Assembly Comput-
ers (TACs) designed to obtain the output of computa-

*This research was supported in part by National Science
Foundation Grant CCF-2329918.

�Massachusetts Institute of Technology, tagomez7@mit.edu
�University of Texas Rio Grande Valley,

{robert.schweller,timothy.wylie}@utrgv.edu

tion while obscuring the inputs and computational his-
tory. We do this by proving that covert computation
is possible in one of the simplest standard models of
self-assembly (the Abstract Tile-Assembly Model [26])
if only a constant number of prebuilt assemblies are al-
lowed in the tile set.

1.1 Previous Work

The Abstract Tile-Assembly Model (aTAM) was first
introduced in [26] and inherited the ability to perform
Turing computation from Wang tiles [25]. Since then,
investigation into the model has led in many directions,
such as Intrinsic Universality [17,20], efficient assembly
of shapes [22], and parallel computation [6, 21]. Many
generalizations have also appeared, such as allowing for
RNA tiles that can be deleted [1, 14], multiple stages
of growth [7, 13, 15], and even negative glues [10, 16].
The aTAM is powerful because not only can the tile
set store information, but work has also gone into using
the seed [4], or even the temperature [12,23], for making
systems more complex.

Tile Assembly Computers were defined in [6,21], and
Covert Computation, as defined in the field of self-
assembly, was first introduced in 2019 [10] for negative
growth-only aTAM. In negative variations of tile self-
assembly models, tiles are capable of not only attach-
ment to, but also detachment from, an assembly if the
assembly has a cut through the bond graph less than
the temperature, which might have been introduced by
a negative glue. In negative growth-only aTAM, the
system must be designed so that no tile detachment
can occur, even when there may be glues providing
a repellent force. The covert computation framework
was created to analyze the Unique Assembly Verifica-
tion (UAV) problem within that model, and showing
it to be coNP-complete. Covert computation has been
explored in two other models of self-assembly as well:
Staged Self-Assembly [7] and Tile Automata [8].

Unique Assembly Verification and Producibility are
fundamental problems in the field of self-assembly. In
the standard aTAM (no negative glues), the Producibil-
ity and UAV problems are solvable in polynomial time
[2]. These algorithms generalize to the 3D aTAM as
well. However, covert computation is possible in the
3D aTAM [3] even though UAV is polynomial. With
prebuilt assemblies in the aTAM, Producibility is NP-
complete, and UAV is known to be coNP-complete with

37th Canadian Conference on Computational Geometry, 2025 198

Model Max Amt. τ Result Ref.
Size >1

aTAM 1 0 τ P [2]

NegGO aTAM∗ 1 0 2 coNP-c [10]

3D aTAM 1 0 2 P [2]

aTAM 38 O(|A|)† 2 coNP-c [9]

aTAM 12 8 2 coNP-c Thm. 1

polyTAM O(1) any τ FPT Thm. 3

Table 1: Complexity results of Unique Assembly Veri-
fication in the aTAM with our result added. All other
UAV results have focused on the tile set being single-
tons. UAV is undecidable in the negative aTAM, but
coNP-complete with negative glues if the system never
allows detachment (∗growth only). τ is the temperature
of the system. Max Size refers to the size of the attach-
able tiles in the tile set, and the Amt. > 1 column is the
number of different polyominos greater than a singleton
in the system. † This refers to the size of the assembly
A that is input to UAV.

a linear number of constant-sized (38) assemblies [9]. A
summary of some previous UAV results in the aTAM is
shown in Table 1.

1.2 Our Contributions

Here, we drastically improve the previous prebuilt
aTAM result by proving that, not only is it capable
of covert computation, but that UAV, even with only
eight prebuilt assemblies of constant size (12), is still
coNP-complete. This is different from the polyTAM
model [18] since each prebuilt assembly must be built
from individual tiles in the system. The covert construc-
tion and UAV result are covered in Section 3. Following
in Section 4, we show that Producibility in the poly-
TAM (to show a separation from the prebuilt model)
and Unique Assembly Verification are Fixed Parame-
ter Tractable with respect to the size k of the largest
polytile.

2 Definitions

We begin with an overview of the Prebuilt Abstract
Tile-Assembly Model, the Polyomino Tile Assembly
Model, and then follow with a definition of Tile As-
sembly Computers and covert computation.

2.1 Abstract Tile Assembly Model

We provide a brief, high-level definition of the Abstract
Tile-Assembly Model (aTAM) and refer the reader
to [22] for a formal definition. At a high level, the Ab-
stract Tile-Assembly Model (aTAM) uses a set of tiles
capable of sticking together to construct shapes. These

S

SS

SSS

Tile Set

Assembly
Sequence

(a) Prebuilt aTAM Example

S

S

SS

S S

Tile Set

Assembly
Sequence

(b) polyTAM Example

Figure 1: Example temperature-2 systems with a seed
S and a 2 × 1 tile. The terminal assembly is outlined,
matching colors are matching glue labels, and the size
of the glue is the strength (1 or 2). (a) Prebuilt aTAM
system. (b) polyTAM system.

tiles are typically squares (2D) or cubes (3D) with glues
on each side where they may attach to one another. A
glue is labeled to indicate its type, governing what other
tiles it may bond with and the strength of the bond. A
tile with all of its labels is a tile type. A tile set contains
all the tile types of the system. A single tile may attach
at a location if the combined strength of the matching
glues is greater than or equal to the temperature τ . An
assembly is a shape made up of one or more combined
tiles. Construction is started around a designated seed
assembly S. Any assembly capable of being made from
the seed is called a producible assembly. An assembly
is terminal if no more tiles can attach. A terminal as-
sembly is said to be uniquely produced if it is the only
terminal assembly that can be made by a tile system. A
tile system is formally represented as an ordered triplet
Γ = (T, s, τ) of the tile set, seed assembly, and temper-
ature parameter, respectively.

2.2 Prebuilt aTAM and polyTAM

Formal definitions for the prebuilt aTAM and the poly-
TAM can be found in [9] and [18], respectively. Figure
1 gives a small example aTAM and polyTAM system to
illustrate the main concepts and the difference in larger
attaching assemblies. Briefly, the prebuilt aTAM gen-
eralizes the aTAM by allowing the tile-set to contain
pre-assembled, τ -stable macro assemblies that attach

199 CCCG 2025, Toronto, Canada, August 13–15, 2025

to a growing seed if such attachment yields at least τ
strength. Similarly, the polyTAM allows polyomino-
shaped tiles in the tile set, but does not require that
these polyominos be made up of individual tiles, which
fundamentally affects the problems of assembly produc-
tion and unique assembly production.

2.3 Covert Computation

We provide a brief, informal definition of covert com-
putation, and refer the reader to [10, 21] for a formal
definition. Briefly, a tile system computes a function
f : Zn

2 → Zk
2 if there exists a uniform method for encod-

ing an n-bit string x into a seed such that the unique
terminal assembly of the system with such seed maps
to the k-bit string f(x). A system that computes f is
further said to covertly compute f if f(x1) = f(x2) im-
plies that the final terminal assemblies produced from
inputs x1 and x2 are guaranteed to be identical. In
other words, the assembly produced from the computa-
tion of f(x) cannot be used to distinguish which input
was used to create it. This includes obfuscating not
only the input bit string encoded in the initial seed,
but also the entire computational history of the com-
putation. In contrast, standard aTAM Turing machine
simulations explicitly encode the initial bit string and
each computational step of the computation’s history.

3 Covert Computation in the Prebuilt aTAM

Here, we show that covert computation is possible in
the 2D aTAM with polynomial assembly size if we al-
low prebuilt assemblies. We then show that this implies
Production is NP-complete and Unique Assembly Veri-
fication (UAV) is coNP-complete in the prebuilt aTAM
via a reduction from Circuit SAT. Although both of
these problem complexities were known for the general
problem [9], we greatly lower the size of the prebuilt
assemblies from 36 to 12, and we only need 8 different
assemblies rather than a number polynomial in the in-
put assembly size. Thus, we have shown the problems
can not be parameterized on the prebuilt assembly size
(they are paraNP-complete/para-coNP-complete).
The hardness result follows the same basic construc-

tion design as used in the construction from [10]. We
then follow with the results for a constant number of
prebuilt assemblies.

Definition 1 (Planar Circuit SAT) Instance: A
planar directed acyclic graph (DAG) G = (V,E)
with n boolean inputs, one output, and all gates are
NAND gates (or NOR gates). Every v ∈ V is either
a NAND gate (deg−(v) = 2, deg+(v) = 1) or a fanout
(deg−(v) = 1, deg+(v) = 2). The source vertices,
vi ∈ V s.t. deg−(vi) = 0 and 1 ≤ i ≤ n, are the
variables. The sink vertex, s ∈ V s.t. deg+(vi) = 0 is

Figure 2: The NAND gate construction. The green, red,
and blue glues are all strength one (system strength is
2), and the lines represent unique full-strength glues.
The fully constructed gate at the end is shown on the
left. The input to any of the gates will be the upper
green (True) or lower red (False) tiles on the left side,
which each have a strength-1 green/red glue. Depending
on which two are present, there are two prebuilt assem-
blies that can attach: the one with two green tiles on
the right, and the one with the reds. These are equiva-
lent to outputting True or False, respectively. In order,
there is the full gadget, the 2 True inputs with False
output, True/False with True output, False/True with
True output, and 2 False inputs with a True output.

the “output” of the boolean circuit.
Question: Does there exist a setting of the inputs such
that the output to the circuit is 1?

3.1 Overview

We use a dual-rail logic implementation of variables and
wires to build NAND, FANOUT, and BUFFER gates.
As each gadget attaches, it backfills the previously un-
used wires and gadgets so that the input to a gate is
obscured (see Figure 3a).

The main insight for the construction is that a 4× 4
block can be used in a prebuilt gadget where the as-
sembly is stable with strength-1 glues, but it is not con-
structable from a seed without other tiles (see Figure
3b). Thus, only when backfilling are helping tiles there
to allow other parts of the gadget to assemble. These

37th Canadian Conference on Computational Geometry, 2025 200

A B A B
(a) Backfilling (b)

Figure 3: (a) Backfilling with a NAND (gadget A)and
NOT (gadget B) connected. Only when the inputs are
received will the gadget backfill the other possible input
value. (b) The minimum prebuilt assembly that can not
be assembled from a seed in a strength-2 system.

4×4 blocks are visible in all gadgets as the cycles using
strength-1 blue glues.

Variables and Wires. A single row of tiles represents
a true or false signal in the dual-rail logic. These are
seen as the input to the gates shown in Figures 2 and 5
where the green tiles are true and the red false.

NAND Gate. The NAND gate is shown in Figure 2.
The first image shows the filled in gadget, and the next
four show the different prebuilt assemblies that function
as the NAND gadget. The red and green tiles on the
left side are the wires attaching to the white tiles of the
gadget. The two wires are both needed for the gadget to
cooperatively attach, but only the prebuilt gadget with
the correct output can attach. The lines attaching tiles
all have strength-2 glues, and all other blue, green, and
red glues have strength-1.

Note that the prebuilt assemblies can not be built
with single tile attachments due to the output tiles that
are cooperatively attached, but could not have been
built in the aTAM. This is also why the other truth
value line does not populate when the gadget attaches.
The two missing tiles attached with blue glues can only
be filled once the other line has backfilled to the gadget.

Finally, we note that each NAND needed in a circuit is
a distinct prebuilt assembly (with the four variants) due
to needing distinct glues for the inputs. If these were
not unique, the circuit would not be built properly.

FANOUT Gate. Figure 5 shows the complete gadget
and the two prebuilt assemblies that implement it. The
output works similar to the NAND gadget where the
other output tiles can only be placed by backfilling.

BUFFER Gate. For the fanout, since we need one
rail to backfill before the other rail can go, we create a
backfill gadget (Figure 6), that simply forces the backfill
to happen behind itself. We can then place these on the
output of each fanout rail. These would be needed if
you had both outputs of a fanout going into the same
NAND as in Figure 7.

3.2 Verification with Prebuilt Assemblies

Theorem 1 Production and Unique Assembly Verifi-
cation in the prebuilt aTAM are NP-complete and coNP-
complete respectively with only 8 prebuilt assemblies of
size-12 or fewer tiles.

Figure 4: The NAND gadget with two false inputs. The
true rails backfill, then the side tiles go around the gad-
get, but only the prebuilt tiles can continue the signal.
The rest of the gadget completes when the false rail is
backfilled from the next gadget.

Figure 5: The FANOUT construction. Assumes that
the end of the wire has a unique tile indicating a fanout.
The fully filled gadget is shown on the left. The center
figures shows the prebuilt True FANOUT attaching to
a True line, and the end figure shows a prebuilt False
FANOUT attaching to a False line.

Figure 6: The backstop/buffer gadget only requires one
input. This is equivalent to a buffer gate.

Proof. Given any planar Circuit SAT with a DAG
made of wires, NANDs, and FANOUTs, we build a pre-
built aTAM system by converting all gates to functional
NAND and FANOUT prebuilt assemblies (with unique
glues) in the system. The wires are made of unique tiles
that can only connect the prebuilt assemblies.

We create the seed assembly as shown in Figure 9
where either true or false prebuilt gadgets can attach
to each variable. Each variable has its own version of
the true and false assembly that differ by the connecting
glue. Thus, all possible seeding truth values can occur.

Once each gadget places, it backfills the previous

201 CCCG 2025, Toronto, Canada, August 13–15, 2025

Figure 7: An example usecase where the backstop gad-
get is needed. Here, a fanout has both outputs going
into the two inputs of a NAND. If a false signal was the
input to the fanout, without the backstop to force the
backfilling to assemble the other output of the fanout,
the NAND could never cooperatively attach.

Figure 8: The XOR gate implemented with NANDs and
FANOUTs and then shown as a terminal assembly built
from the prebuilt assemblies and tiles. Note that in an
actual build, only the true or false would be output in
the final NAND gadget.

wires and gadgets. Thus, at the end, all terminal as-
semblies look the same unless some assignment satisfies
the circuit sat, which would then have a ‘True’ output
on the final gadget as opposed to a ‘False’. □

4 PolyTAM UAV

In this section, we consider the complexity of pro-
ducibility and UAV in the polyTAM. Unlike the pre-
built aTAM, the polyominos of the polyTAM are not
made up of individual tiles. This changes the com-
plexity of producibility and UAV since, in the prebuilt
model, multiple distinct layouts of prebuilt assemblies

Figure 9: The input seed is a simple linear assembly
with variable buffer assemblies attached. The buffer
gadgets can be attached nondeterministically with the
cooperative input glues. For the Circuit SAT reduction,
we must allow all possible assignments. The linear as-
sembly seed with no variables attached can be added,
and all possible assignments are feasible.

could come together to form a unique underlying pat-
tern of tiles. However, in the polyTAM, this does not
happen, making the problems of producibility and UAV
provably easier.

Unique Assembly Verification has not been stud-
ied within the literature for the polyTAM, however, a
slightly more involved variation of the aTAM UAV al-
gorithm (based on the size of the polyominos in the tile
set) can solve the problem [2].

Theorem 2 Producibility in the PolyTAM is in P.

Proof. We run the same greedy grow algorithm from
[2]. For system Γ = (T, S, τ) and target assembly A,
start with the seed assembly A′ = S. While there ex-
ists a poly tile t ∈ A that may attach to A′, attach
it. If A′ == A, then accept, or if we reach a terminal
assembly such that A′ ̸= A, then reject.

At a high level, the algorithm correctness still holds
because placing a tile never prevents reaching the target
and thus, order of placement does not matter. Formally,
if A′ → B and A′ → C, then C → B

⋃
C. If A′ → B

via attaching tile p, then p may still attach to C. All
the glues used by p to attach still exists in C because
A′ ⊑ C. Further, the tile q used by A′ → C does not
overlap with p since they both exist in A. Thus, we can
attach p to C and reach A′ ⋃{p}

⋃
{q} = B

⋃
C. □

The algorithm also generalizes the UAV algorithm for
the aTAM from [2]. However, instead of only excluding

37th Canadian Conference on Computational Geometry, 2025 202

a single tile in each loop, we exclude all the neighbor-
hoods of that tile. At a high level, we must do this to
make sure we avoid any possible geometric blocking.

Theorem 3 Unique Assembly Verification in the Poly-
TAM is solvable in time 2O(k)poly(|T |, |A|) where k is
the size of the largest polytile. Thus, UAV is FPT with
respect to polytile size.

Proof. For polytile p ∈ A, let NA(p, i) be the set of
polytiles q such that q is within i unit squares of p in A.
We refer to a rogue assembly as any assembly R such
that either (1) R ⊈ A or (2) R is a strict subassembly of
A and is terminal. Thus, the existence of a producible
rogue assembly is sufficient and necessary for a UAV
instance to be false. While in the prebuilt aTAM we
had to handle the second case in the polyTAM, we know
that if the assembly is producible then no subassembly
is terminal via the same argument as in producibility.
Placing a tile from A never prevents reaching the target.

The algorithm is as follows: for each polytile p ∈ A
and subsets Q ⊆ NA(p, 4k), consider the assembly
B = A \ p

⋃
Q. Starting from the seed S, run the

producibility algorithm from Theorem 2 and take the
maximally produced subassembly C ⊑ B. Check if any
tile r ̸= p can attach to C. If any such tile can attach,
then return R = C

⋃
r.

It remains to be proven that the returned R is a rogue
assembly. If the UAV instance is false, then there ex-
ists some producible rogue assembly R′. Since it is
producible there exists some R′ → R, we can repeat
such a process until we reach some non-rogue assembly
B′ → R. Thus, we can always assume there exists a
rogue that is within 1 attachment from some subassem-
bly B′ ⊑ A. Consider the smallest such B′. Let r be
the polytile such that R = B′ ⋃{q}, which exists since
B′ → R. Let βA(r) be the subset of polytiles of A that
overlap with r, i.e., the tiles that block r. Let αB′(r) be
a minimum set of polytiles in B′ that r uses to attach
to B′, i.e., the glue tiles. Now consider some other pro-
ducible assembly C ′, as long as C ′ ⋃αB′(r) = αB′(r)
and C ′ ⋂βA(r) = ∅, i.e., C ′ allows r to attach. Now we
will find some C ′ in our algorithm and that attaching
r to C ′ forms a rogue assembly. Consider some tiles
e ∈ A such that e and r overlap. Consider the neigh-
borhood N(e, 4k). Note everything in αB′(r) and βA(r)
are included in N(e, 4k) as the bounding box containing
both r and e is max 2k in both dimensions. We need to
double the size of the bounding box again since βA(r)
and βA(r) are within k distance of r. Thus, since we
check all subsets of N(e, 4k), we will find a subset with
everything in αB′(r) and nothing in βA(r). Thus, we
build some assembly C ′ that allows r to attach building
a rogue assembly. □

5 Conclusion and Future Work

In this paper we showed the prebuilt aTAM is capa-
ble of covert computation and used that to improve the
hardness result of verification problems to show they
only require a constant number of tiles. Thus, in pa-
rameterized complexity terminology these problems are
paraNP-complete (or para-coNP-complete) with respect
to the prebuilt assembly size, which means the problem
is NP-hard (coNP-hard) for some exact constant, which
is 8 for these problems. This in contrast to the poly-
TAM where we have an FPT algorithm with respect to
the polytile size. These results lead to some interesting
directions for future work.

� One open problem is to improve the FPT algo-
rithm. Can we achieve a polynomial time algorithm
or is it NP-hard for super-constant sized polytiles?

� In the prebuilt aTAM we have pushed the prebuilt
assembly size from 38 to 12. With a modification
of the original aTAM UAV algorithm, similar to
the FPT algorithm for polyTAM, it seems feasible
to show that UAV with prebuilt assemblies of size
≤ 3 is polynomial since size-4 assemblies are the
smallest stable assemblies that could exist that is
not buildable from singletons (a cycle of 4 tiles with
strength-1 glues between them in a τ = 2 system).
See Figure 3b. This leaves a complexity gap for
prebuilt assemblies of sizes 4− 11.

� We only used 8 different prebuilt assemblies. What
if only a single prebuilt assembly is allowed?

� Covert computation is already possible in the 3D
aTAM, however, we believe that in the 3D prebuilt
aTAM, if we modify the covert circuit (from [9])
with a fewer number of smaller sized prebuilt as-
semblies, covert computation is possible and UAV
would be coNP-complete, which is in P without
prebuilt assemblies.

� Although not investigated, we may also get some
straightforward corollaries from the polyTAM, such
as the prebuilt aTAM being capable of universal
computation at temperature-1 whenever we have
prebuilt assemblies of at least size 3 [18].

References

[1] Z. Abel, N. Benbernou, M. Damian, E. D. Demaine,
M. L. Demaine, R. Flatland, S. D. Kominers, and
R. Schweller. Shape replication through self-assembly
and rnase enzymes. In Proceedings of the 2010 An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA’10, pages 1045–1064, 2010.

[2] L. M. Adleman, Q. Cheng, A. Goel, M.-D. A. Huang,
D. Kempe, P. M. de Espanés, and P. W. K. Rothemund.

203 CCCG 2025, Toronto, Canada, August 13–15, 2025

Combinatorial optimization problems in self-assembly.
In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing, pages 23–32, 2002.

[3] R. M. Alaniz, D. Caballero, T. Gomez, E. Grizzell,
A. Rodriguez, R. Schweller, and T. Wylie. Covert Com-
putation in the Abstract Tile-Assembly Model. In Sym-
posium on Algorithmic Foundations of Dynamic Net-
works, volume 257 of SAND’23, pages 12:1–12:17, 2023.

[4] A. Alseth and M. J. Patitz. The need for seed (in the
abstract tile assembly model). In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), SODA’23, pages 4540–4589, 2023.

[5] S. Berman, S. P. Fekete, M. J. Patitz, and C. Schei-
deler. Algorithmic foundations of programmable mat-
ter (dagstuhl seminar 18331). In Dagstuhl Reports, vol-
ume 8. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2019.

[6] Y. Brun. Arithmetic computation in the tile assembly
model: Addition and multiplication. Theoretical Comp.
Sci., 378:17–31, 2007.

[7] D. Caballero, T. Gomez, R. Schweller, and T. Wylie.
Covert computation in staged self-assembly: Verifica-
tion is pspace-complete. In Proceedings of the 29th Eu-
ropean Symposium on Algorithms, ESA’21, 2021.

[8] D. Caballero, T. Gomez, R. Schweller, and T. Wylie.
Verification and computation in restricted tile au-
tomata. Natural Computing, 2021.

[9] D. Caballero, T. Gomez, R. Schweller, and T. Wylie.
Complexity of verification in self-assembly with prebuilt
assemblies. Journal of Computer and System Sciences,
136:1–16, 2023.

[10] A. A. Cantu, A. Luchsinger, R. T. Schweller, and
T. Wylie. Covert computation in self-assembled cir-
cuits. Algorithmica, 83:531 – 552, 2019.

[11] L. Ceze, J. Nivala, and K. Strauss. Molecular digi-
tal data storage using dna. Nature Reviews Genetics,
20(8):456–466, 2019.

[12] C. Chalk, A. Luchsinger, R. Schweller, and T. Wylie.
Self-assembly of any shape with constant tile types us-
ing high temperature. In Proc. of the 26th Annual Eu-
ropean Symposium on Algorithms, ESA’18, 2018.

[13] C. T. Chalk, E. Martinez, R. T. Schweller, L. Vega,
A. Winslow, and T. Wylie. Optimal staged self-
assembly of general shapes. Algorithmica, 80(4):1383–
1409, 2018.

[14] E. Demaine, M. Patitz, R. Schweller, and S. Summers.
Self-assembly of arbitrary shapes using rnase enzymes:
Meeting the kolmogorov bound with small scale factor.
Symposium on Theoretical Aspects of Computer Science
(STACS2011), 9, 01 2010.

[15] E. D. Demaine, S. P. Fekete, C. Scheffer, and
A. Schmidt. New geometric algorithms for fully con-
nected staged self-assembly. Theoretical Computer Sci-
ence, 671:4 – 18, 2017. Computational Self-Assembly.

[16] D. Doty, L. Kari, and B. Masson. Negative interactions
in irreversible self-assembly. Algorithmica, 66(1):153–
172, 2013.

[17] D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, S. M.
Summers, and D. Woods. The tile assembly model is in-
trinsically universal. In 2012 IEEE 53rd Annual Sympo-
sium on Foundations of Computer Science, pages 302–
310. IEEE, 2012.

[18] S. P. Fekete, J. Hendricks, M. J. Patitz, T. A. Rogers,
and R. T. Schweller. Universal computation with arbi-
trary polyomino tiles in non-cooperative self-assembly.
In Proceedings of the 2015 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA’15, pages 148–167,
2015.

[19] P. W. Frederix, I. Patmanidis, and S. J. Marrink.
Molecular simulations of self-assembling bio-inspired
supramolecular systems and their connection to exper-
iments. Chemical Society Reviews, 47(10):3470–3489,
2018.

[20] D. Hader, A. Koch, M. J. Patitz, and M. Sharp. The
impacts of dimensionality, diffusion, and directedness
on intrinsic universality in the abstract tile assembly
model. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2607–
2624. SIAM, 2020.

[21] A. Keenan, R. Schweller, M. Sherman, and X. Zhong.
Fast arithmetic in algorithmic self-assembly. Natural
Computing, 15(1):115–128, Mar 2016.

[22] P. W. Rothemund and E. Winfree. The program-size
complexity of self-assembled squares. In Proceedings of
the thirty-second annual ACM symposium on Theory of
computing, pages 459–468, 2000.

[23] R. Schweller, A. Winslow, and T. Wylie. Complexities
for high-temperature two-handed tile self-assembly. In
R. Brijder and L. Qian, editors, DNA Computing and
Molecular Programming, pages 98–109, Cham, 2017.
Springer International Publishing.

[24] K. F. Wagenbauer, C. Sigl, and H. Dietz. Gigadalton-
scale shape-programmable dna assemblies. Nature,
552(7683):78–83, 2017.

[25] H. Wang. Proving theorems by pattern recognition —
ii. The Bell System Technical Journal, 40(1):1–41, 1961.

[26] E. Winfree. Algorithmic Self-Assembly of DNA. PhD
thesis, California Institute of Technology, June 1998.

	Introduction
	Previous Work
	Our Contributions

	Definitions
	Abstract Tile Assembly Model
	Prebuilt aTAM and polyTAM
	Covert Computation

	Covert Computation in the Prebuilt aTAM
	Overview
	Verification with Prebuilt Assemblies

	PolyTAM UAV
	Conclusion and Future Work

