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Partitioning Colored Points into Monochromatic Islands is NP-Complete

Steven van den Broek*

Abstract

We are given a set S of colored points and a positive
integer k. A subset of S is monochromatic if it con-
tains points of only one color. We prove that it is NP-
complete to decide whether S can be partitioned into at
most k£ monochromatic subsets whose convex hulls are
pairwise-disjoint.

1 Introduction

Research on partitioning and separating colored points
is abundant in both discrete and computational geome-
try. For an overview of discrete-geometry results, we re-
fer to a recent survey [19]. The shapes used to partition
or separate the points may have constant-complexity
such as lines [8,10,15,16, 18,21, 22], triangles [2,7,23],
disks [9, 11, 24], rectangles [1, 5, 29], wedges [15, 17],
strips [15,17], or L-shapes [25]; or they may have linear
complexity such as convex polygons [3,4,12,13].

Here we study the problem of using convex polygons
to partition colored points into monochromatic islands.
A set of points is monochromatic if it contains points of
only one color. For a colored point set P, an island [
is defined by Bautista-Santiago et al. [4] to be a subset
of P such that CH(I)NP = I, where CH(I) denotes the
convex hull of I (including the interior).

We prove that the following problem is NP-complete
(see Figure 1 for an illustration of the problem):

2C-IP Given a bichromatic set of points and a positive
integer k, does a partition of the points into at most
x monochromatic islands exist?

We identify an island (a subset of P) with its convex
hull (a subset of R?). In particular, a partition into
islands has the requirement that the convex hulls of the
islands are pairwise-disjoint. Furthermore, we will refer
to the two colors in the 2C-IP problem as red and blue.
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Figure 1: The 2C-IP problem. A set of red and blue

points and a partition into four monochromatic islands.

Related work. Monochromatic island partitions have
been studied before [12,27]. There is also work on find-
ing an optimal monochromatic island in a colored point
set [4] (with a flexible definition of ‘optimal’), and is-
land partitions have also been used to define a notion of
coarseness that captures how blended a set of bicolored
points are [6]. However, to our knowledge, the compu-
tational complexity of the 2C-IP problem has not been
studied. The problem of deciding whether a bichro-
matic set of points can be covered by k monochromatic
islands is known to be NP-complete [4] as it follows from
a reduction by Agarwal and Suri [2]. Agarwal and Suri
reduce from the planar 3-SAT problem by using one
color of points to constrain islands of the other color.
However, this reduction fails for the 2C-IP problem:
islands formed by blocker points cannot overlap islands
of the other color. This fact makes an NP-hardness re-
duction more challenging. We circumvent this issue in
our reduction by creating a structured problem instance
where the optimal partitions of the blue points and the
red points have little interaction. Our reduction is in-
spired by the reduction by Van Kreveld, Speckmann,
and Urhausen [28] for a similar problem.

2  Overview

We show hardness via a reduction from an independent-
set problem on line segments (which we will simply refer
to as segments from now on). The problem asks: given
a set of n segments and a positive integer k, does a sub-
set of k segments exist that are pairwise disjoint? Kra-
tochvil and Nesetfil [20] showed this to be NP-complete,
even if the segments are aligned with exactly three direc-
tions and no segment endpoint lies on another segment.
We adapt their reduction to show that this problem is
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still NP-complete even if there exists a regular triangu-
lar grid T defined by O(n?) grid lines such that:

e the segments and their endpoints lie on grid lines
and grid vertices of T respectively;

e 10 pair of segments lie on the same grid line of T'.

Following Kratochvil and NesSetfil’s notation we refer
to this problem as pure (segments cannot contain other
endpoints) equiangular 3-directional segment maximum
independent set (PEA3D) and show it is NP-complete
in Section 3. While it is not surprising that the problem
stays NP-complete under the given restrictions and the
proof requires only minor changes to the original reduc-
tion [20], this variant might be of independent interest
as a basis for reductions to problems on triangular grids.

In Section 4 we reduce PEA3D to 2C-IP. The tri-
angular grid T of the PEA3D instance is used as a
basis for the 2C-IP instance. We shrink each face of T’
slightly, which gives rise to narrow corridors in which we
place blue points to represent the segments of PEA3D.
We also place blue points in the interior of the triangles
and red points on the boundary of triangles. Our 2C-
IP instance separates red and blue island candidates
and limits their interaction in the following sense. We
show that there exists an optimal partition P, of the red
points into monochromatic islands (avoiding the blue
points but not blue islands) and an optimal partition P,
of the blue points into monochromatic islands (avoiding
the red points), such that the islands in P, and P, are
pairwise disjoint. Our instance provides this separation
by allowing us to place blue points in the interior of tri-
angles to block red islands, without needing additional
islands to cover these ‘blockers’. Similarly, red blockers
can be freely placed on the boundary of triangles.

3 NP-completeness of PEA3D

Kratochvil and Nesetfil [20] reduce the independent-set
problem in a planar graph G = (V| E) of maximum

degree 4 (which remains NP-hard [14]) to finding an
independent set of segments with exactly three distinct
slopes. To show hardness of PEA3D we retrace the
steps of this reduction and make small changes in several
steps to guarantee that the constructed set of segments
complies with our additional restrictions.

Their reduction starts by creating a planar orthog-
onal drawing I’ of G (in polynomial time and on an
O(|V]) x O(|V|) grid [26]; an example is shown in Fig-
ure 2a). Every edge e € F is represented by a polyline
with k. linear pieces (the numbers in Figure 2a). The
idea of the reduction is to represent I' by a set S of seg-
ments, such that the maximum independent-set size of S
is proportional to the maximum independent-set size
of G. The set S of segments Kratochvil and Nesetfil cre-
ate form an intersection representation of an auxiliary
graph G’; that is, there is a segment in S for every vertex
of G’ and two segments intersect if and only if their ver-
tices are connected by an edge. Graph G’ is constructed
by subdividing edges of G. To recreate drawing I with
segments, every edge of G needs to be subdivided by
at least k. vertices, and to ensure the relation between
independent-set sizes every edge of G needs to be sub-
divided by an even number of vertices. Hence, Kra-
tochvil and Nesetfil define G’ by subdividing each edge
by adding an even number 2| (k. +1)/2] +2" of vertices.
This implies the size a(G’) of a maximum independent
set in G’ is equal to a(G) + > cp([(ke +1)/2] 4+ 1).
They then create S by replacing every vertex of I' with
a horizontal segment and replacing every linear piece of
an edge in I" with a corresponding horizontal or vertical
segment (Figure 2b). These edge segments are slightly
elongated to create proper intersections at the points
where edges in I' have bends except for the segments
that would intersect the vertex segments. These are in-
stead slightly shortened on that end and if they are hor-
izontal segments they are additionally slightly vertically
offset to ensure that the vertex segments are not inter-

IThe original publication typesets this as 2 [(ke + 1)/2] + 2.

i

(a) Drawing I'; numbers show
the complexity k. of an edge e

(b) Segment representations of vertices
(purple) and linear pieces of edges (black)

(c) Segments after applying the scaling
and skewing transformations

Figure 2: The first steps of the hardness reduction for PEA3D. We assume for illustration purposes that vertices in
I" do not lie directly next to each other, so that the segments representing vertices can be wide. This can always be

ensured by doubling the resolution of the grid.
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sected. Note that these operations can be performed
such that the segments still lie on a regular square grid
by doubling the resolution of the grid a constant num-
ber of times. So far, k. segments have been placed per
edge e. Before the next step of the reduction we apply
our first adaption, which is applying the following linear
transformation to S:

(1 ). 2.

This keeps horizontal segments horizontal, and first
shrinks and then skews the vertical segments to ones
of the same length but now with a slope of 7/3 (this
is shown in Figure 2¢). To complete the segment in-
tersection representation of G’ (Figure 3a), Kratochvil
and Nesettil add an additional 2 or 3 segments if an
edge e in I consists of an even or odd number of lin-
ear segments respectively. If e has an even number of
segments, we place on both ends of e a small segment
with slope —/3 such that it intersects e and the vertex
segment (case I in Figure 3b). If e has an odd number of
segments, we similarly add on one end a single segment
with slope —m/3; however, on the other end we instead
add two segments with slopes —7/3 and /3 (case II in
Figure 3b). Note that these connection segments can
always be placed in this way because the vertices are
represented by segments with slope 0, and linear pieces
of edges by segments with slope either 0 or 7/3. Fur-
ther note that it suffices to double the regular triangular
grid a constant number of times such that the connec-
tion segments can be placed on the grid.

This ends the reduction by Kratochvil and Nesetfil;
however, we now apply our final adaption. Let n denote
the number of segments in S. There might still be up to
O(n) segments that lie on the same grid line. To avoid
this, we can simply double the resolution of the grid
until every grid line is replaced by sufficiently many (at
most O(n)) grid lines, i.e., as many grid lines as there are
line segments lying on that specific grid line (Figure 3c).
It is easy to see that (i) any two segments that lay on the
same grid line can be shifted to be on different grid lines

G/

-

-

o-@—o—o——0—o

(a) Graph G’

(b) Intersection representation of G’

in such a way that any two segments that intersected
before still intersect after being shifted, and (ii) this
procedure adds at most O(n) grid new lines per original
grid line and therefore the entire set of segments fits into
a regular triangular grid with O(n?) grid lines.

By construction, the final set of segments forms an
intersection representation of G’, which has an inde-
pendent set of size at least k+ > ([ (ke +1)/2] +1)
if and only if G has an independent set of size at least k.
Therefore, the PEA3D problem is NP-hard.

Lastly, NP-containment is straightforward since we
can easily represent an independent set of segments em-
bedded in an integer grid in polynomial space, and ver-
ify in polynomial time that (i) they are pairwise non-
intersecting and (ii) that the set has a large enough
cardinality. This completes our reduction and results in
the following theorem.

Theorem 1 PEA3D is NP-complete.

4 NP-completeness of 2C-IP

We are now set up to present our reduction from
PEA3D to 2C-IP. Let S be a set of segments and let k
be a positive integer such that together they form an
instance of PEA3D. We will construct a set P of red
and blue points and a value k such that there exists an
independent set of S of size k if and only if there exists
a partition of P into x monochromatic islands.

Auxiliary structure. Our reduction uses as auxiliary
structure a bounded triangular unit-grid on which the
segments S lie. We choose this grid such that it has a
convex outer boundary and such that no interior point
of a segment lies on this boundary. See Figure 4 for
an illustration of this grid and upcoming definitions.
Let T denote the set of points in R? that lie on the
edges and vertices of the grid that are not incident to
the outer face. We shrink each (triangular) face of the
grid by taking the Minkowski difference with a disk of
diameter € = 0.1 to create a set A of triangles. The

(c¢) Moving segment on new grid line

Figure 3: The last steps of the reduction for PEA3D. The segments in (b) lie on a regular triangular grid consisting of
O(n) grid lines. Connections to vertex segments are made using either one (I) or two (IT) segments, which correspond
to green and blue subdivision vertices of (b), respectively. After step (c), there are O(n?) grid lines.
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(a) Segments S in triangular grid

>Q< AN

) Set T' (in black, open at markers)

(c) Triangles A and shortened segments

Figure 4: Structure of the 2C-IP instance.

free space between the triangles of A form narrow cor-
ridors of width . Note that each corridor corresponds
to a grid line—which we will refer to as rows from now
on—in 7. We call the areas where three corridors meet
junctions. Each junction corresponds to an interior grid
point in T: a point where grid rows intersect. The seg-
ments of corridor in between two junctions form alleys,
which correspond to edges of the grid T. For example,
grid T in Figure 4 has 5 rows and 2 interior grid points,
and the corresponding set of triangles A has 5 corridors,
2 junctions, and 11 alleys. Lastly, we shorten each seg-
ment in S on both sides by half a unit such that they
end exactly in the middle of a grid edge; note that this
preserves the intersection pattern since the endpoints of
a segment in .S do not lie on any other segment in S.

2C-IP instance. We create points of P in two phases.
The first set of points represent triangles in A or seg-
ments in S; the second set of points limits the type of
monochromatic islands that can connect points of the
first set. We begin by placing a blue point at the cen-
troid of every triangle (¢riangle points) and a blue point
at the end of every segment (segment points). In every
alley we place a red point at the center of each of the
two triangle edges it is bounded by; we call these bracket
points and the pair a bracket. See Figure 5 for an illus-
tration. If the alley also contains a segment point, we
say the bracket is filled, otherwise the bracket is empty.
Each bracket point lies in exactly one corridor and one
alley. Note that for each alley, the two bracket points
in that alley as well as a potential segment point are all
collinear with the triangle points of the triangles in A
that bound the alley. This completes the first phase of

segment point

o o
o °g &, °g
o o
e
8 b3 8
bracket points o) 0] (@)
°g &, °g <,
triangle point —————»o o)

Figure 5: Placement of the first set of points.

the point placement. Let B and R be the set of all blue
and red points placed so far, respectively.

In the second phase we place a set of red and a set
of blue blocker points. For every pair p,q of distinct
points in B such that p and ¢ are not segment points of
the same segment, the segment pq intersects the bound-
ary of a triangle in A. This intersection exists since
two segment points lie in the same corridor only if they
originate from the same segment; indeed, no two seg-
ments of S lie in the same grid row, which implies that
that no two endpoints of distinct shortened segments lie
in the same grid row. We place a red blocker point at
an arbitrary such intersection (Figure 6). Any island
that contains both p and ¢ also contains the red blocker
point. Hence, after placement of these blockers, we have
the following property.

Observation 1 Two distinct blue points p,q € B can
be part of the same monochromatic island only if p and q
are the segment points of the same segment.

Similarly for every pair (r,s) of red points in R ly-
ing in different corridors, the segment 7s intersects a
triangle. Consider the three straight-line segments em-
anating from the centroid of the triangle and ending
at one of the corners of the triangle respectively. The
segment 7S intersects at least one of these straight-line
segments. We place a blue blocker at an such arbitrary
intersection (Figure 6). This yields a similar property
as before, but now for the red points.

Observation 2 Two points r,s € R can be part of the
same monochromatic island only if they lie in the same
corridor and do not form a bracket that is filled.

Figure 6: Examples for placement of blockers (solid red
and solid blue points).
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Note that all red blocker points lie on the boundary
of triangles in A and all blue blocker points lie in the
interior of triangles in A; hence, the sets of red and blue
blocker points are disjoint. Let Z be the set of all placed
blocker points. The final set of constructed points is
P =BURUZ. Note that Observations 1 and 2 apply
only to pairs of points in B and R, not between any two
blue points or any two red points in P. Therefore, an
island may, for example, cover blue points in different
triangles given at most one of them is a triangle point.

With this the construction of our instance is almost
complete. It remains to state the value k. Let p and 6
be the number of rows and interior grid point in grid T'
respectively. We set k = |A| + p + 4]S| + 26 — 2k. The
reason behind this particular choice for the value of
will become apparent in the following sections.

Triangular grid. Before arguing how the constructed
instance can be used to solve the independent-set prob-
lem, we state two observations on triangular grids.

Observation 3 There is a bijection between minimum-
cardinality segment partitions of T and maps that choose
a grid axis at every interior grid point of T.

Note that the segments in the observation above are not
related to the set S of segments of the independent-set
problem. Intuitively, a map such as described in the
lemma above chooses at every interior grid point the
segment of which row ‘continues’, with the segments
from the other rows stopping at the grid point. Such
a choice has to be made as the grid point should be
covered by exactly one segment; conversely, each choice
uniquely defines a minimum-cardinality segment parti-
tion (Figure 7). It is both sufficient and necessary to use
one segment for each grid row and two additional seg-
ments for each interior grid point. Therefore, we state
the following observation.

Observation 4 A minimum-cardinality partition of T
into segments has size p + 20.

NP-completeness. We now prove that a minimum-
cardinality partition of P into monochromatic islands
has cardinality x if and only if k is the size of the max-
imum independent set of S. We start by proving the
upper bound.

X6
/\/\

Figure 7: Left: grid T (markers and gray boundary are
not part of T'). Right: segment partition of T of size 9.

AVAVA
JVAVA

Figure 8: The structure of an optimal island partition.
For illustration purposes the corridors have been made
wider and the red islands have been moved into the
corridors instead of lying on the boundary of triangles.

Lemma 2 If S has an independent set of size k then P
can be partitioned into k monochromatic islands.

Proof. Let N be the independent set of S of size k.
A partition of P into k islands can be constructed as
follows; see Figure 8 for an example. Cover the inte-
rior of each triangle in A with a blue island. For each
segment in N, cover the corresponding pair of segment
points with a blue island. For each segment not in N,
cover each of the corresponding segment points with a
singleton island. To construct the islands covering red
points, at every interior grid point of 7" we choose an
axis as follows. If the grid point is covered by a segment
in N then we choose the axis with which the segment
is aligned; otherwise we choose an arbitrary axis. By
Observation 3, this mapping of grid point to axis corre-
sponds to a partition of T into segments. Call this set
of segments L. For each segment ¢ € L that covers a
segment point in P, create two corresponding segment-
shaped islands parallel to £ to cover red points in the
corresponding alleys. For each segment in L that does
not cover a segment point in P, create one quadrilateral
island to cover the red points. A red point of P may lie
exactly on the vertex of a triangle. Such a point would
be covered by two islands in our construction; we can
fix this simply by deleting such a point from one of the
two islands.

All blue points are either segment points or lie in the
interior of a triangle of A, both of which are covered
by islands. All red points lie on the edges of corri-
dors, which are also all covered by islands. Furthermore,
all islands are pairwise-disjoint and monochromatic by
construction. The problem instance uses |A| islands to
cover the interiors of triangles and 2|S| — k islands to
cover segment points. By Observation 4, set L has size
p + 20. Each of the k segments in L that covers two
segment points is split into two red islands. Each of the
2(]S] — k) segments in L that covers one segment point
is split into two red islands. The remaining segments
correspond to exactly one red island. Hence, the total
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number of islands is:

Al +2|S| =k +p+ 20+ k+2(|S| — k)
=|A]+4|S|-2k+p+20 =k

O

Next, we match the upper bound with a correspond-
ing lower bound.

Lemma 3 If S has a maximum independent set of
size k then P cannot be partitioned into fewer than x
monochromatic islands.

Proof. We argue that any monochromatic island parti-
tion of P uses at least k islands. Our argument consists
of two parts, one for the set of blue points and one for
the set of red points.

The set B has by construction cardinality |A| 4 2|S].
By Observation 1, a monochromatic island that covers
points of B covers either (i) a single point of B or (ii) a
pair of segment points belonging to the same segment.
Note that each island of type (ii) covers a distinct seg-
ment in S in the sense that the points in the convex hull
of the island are a superset of the points on the segment.
A set of islands of type (ii) then cover a set of pairwise
non-intersecting segments of S. As such an independent
set of S has size at most k, there can be at most k is-
lands of type (ii) in an island partition. Hence, an island
partition of P requires at least |B| — k = |A| +2|S| -k
blue islands.

By Observation 2, red points in R can be part of the
same monochromatic island only if they are in the same
corridor; furthermore, red islands from only one row
can cross a junction. Therefore, by Observation 3, an
island partition can be turned into a segment partition
of T: at every grid point of T, if an island using at least
two points in R crosses the corresponding junction, then
choose the grid axis that corresponds to the corridor
in which the two red points lie; otherwise, choose an
arbitrary axis. Call this segment partition L. We map
a point r € R to the segment of L that crosses the
alley that contains r. By Observation 4, this yields p +
26 sets of red points, each corresponding to a segment
in L. The convex hull of such a set of points can contain
either (i) no segment point, (ii) one segment point, or
(iii) two segment points. Note that, by construction, an
island of the partition covers points from at most one
set. Therefore, we can bound the number of islands by
bounding the number of sets. Sets of type (i) require at
least one island (as they are non-empty). Sets of type
(ii) and (iii) require at least two islands. Sets of type (iii)
arise from segments of L that cover a set of pairwise non-
intersecting segments of S. Hence, as an independent
set of S has size at most k, there are at most k sets of
type (iii). Thus, there are at least 2|S| — 2k sets of type

(ii) or (iii), and an island partition of P requires at least
p+20+k+ (2|S| —2k) = p+ 20 + 2|S| — k red islands.

By summing the two lower bounds, we find that a
monochromatic island partition of P uses at least |A| +
4|S| — 2k + p + 26 = & islands. O

The two lemmas combine to form our main result.
Theorem 4 2C-IP is NP-complete.

Proof. Let (S, k) be a instance of PEA3D and (P, )
the corresponding instance of 2C-IP. By Lemma 2
and 3, set S has an independent set of size k if and only
if P can be partitioned into x monochromatic islands.
Hence, because (P, k) can be constructed in polynomial
time from (S, k) and has polynomial size, NP-hardness
follows from Theorem 1. To show containment in NP,
note that we can represent a solution to 2C-IP in poly-
nomial space as each island is a subset of P and we can
check in polynomial time whether a set of subsets of P
is indeed a monochromatic island partition of P. O

5 Conclusion

We have shown NP-completeness of 2C-1P. The 2C-1P
problem is related to the similar problem 2C-TP where
triangles are used instead of convex polygons to parti-
tion the points; variants of 2C-TP have been studied
by Agarwal and Suri [2] and Bergold et al. [7]. Our
reduction does not apply immediately to the 2C-TP
problem, so the complexity of 2C-TP is still open. It
does, however, hold when covering with quadrilaterals.
Our reduction makes heavy use of collinear points. By
replacing every point in R and B by an appropriate pair
of points, we suspect the reduction can be adapted to
hold true for points in general position.
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