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Puzzles are hard enough just by rotations

Takeshi Yamada* Tom van der Zanden� Ryuhei Uehara*

Abstract

In this paper, we investigate the computational com-
plexity of a series of puzzles. We are given a set of n
centers of circles and n unit disks. Each disk is based
on a unit circular shape, but a part of it can be bitten
by other disks, which is called a lune. We investigate
three variants of this puzzle. First, we investigate the
classic packing puzzle of lunes. We note that the cen-
ters of disks are given as a part of input, and some
disks can be lunes. Therefore, essentially, we only can
rotate the disks and lunes to pack them. Even under
this strong constraint, the packing problem is still NP-
complete. Next we turn to the combinatorial reconfigu-
ration variant of this puzzle. That is, we are given two
nonoverlapping arrangements of disks and lunes on a
given set of centers on a board. Each disk is pinned at
the center, and thus we can just rotate it. The problem
asks if we can transform one to the other by just rota-
tions of disks without overlapping. We show that this
puzzle is PSPACE-complete. Lastly, we focus on the
cases in which the puzzle can be solved in polynomial
time. The first tractable case is one-dimensional pack-
ing puzzle. The second one is the screw-type variant of
this puzzle. In this variant, each disk or lune is real-
ized by a thick screw. We are given a nonoverlapping
arrangement of them. The operation we can do is that
we can screw a disk if its orbit is not blocked by any
other screw. We prove that this variant can be solved
in polynomial time.

1 Introduction

In the context of research on computational complexity
and algorithms, the study of puzzles has played an im-
portant role. One of the reasons is that an algorithm
is a methodology for how to combine basic operations,
while a puzzle is an abstract model of how to combine
the basic pieces under some constraints of pieces. For
example, in [1], Asano et al. investigate the computa-
tional complexity of a puzzle that asks for finding proper
order of a deck of cards with/without rotation and/or
flipping. On the other hand, in [4], Hearn and Demaine
propose a general framework that can capture the com-
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putational complexities of many puzzles, including slid-
ing block puzzles. This framework is useful to show the
hardness of many problems in combinatorial reconfig-
uration, especially, token sliding problem on a graph.
Recently, in [3], Kanzaki et al. investigate the jumping
block puzzles, which is a puzzle counterpart of token
jumping problem on a graph investigated in the context
of the combinatorial reconfiguration.

In this paper, we investigate representative puzzles
that impose strong constraints on both of movements
and pieces. This is a framework that has long been
popular in the puzzle society, and many commercially
available products exist (Figure 1). These puzzles have
the following common property: (1) each piece is based
on a unit disk of radius 1, (2) some pieces can be missing
parts, which is called lunes, (3) the centers of disks are
essentially fixed (or easy to specify). Let’s call these
puzzles rotation puzzles. That is, the input of the puzzle
is a set of n unit disks or lunes and a set of n centers.
We call each piece lune since they can be missing parts
from a unit disk. We assume that the center can be
easily determined from the lune. Precisely, when a lune
is inscribed in a unit circle, the center point of the lune
should be uniquely determined.

We investigate three variants of the rotation puzzles.
The first one is the packing puzzle that asks us to deter-
mine (or to find) if all the lunes can be put on a board so
that the centers of the disks are matching to the given
centers, and no pair of lunes overlaps (Figure 1(a)). We
call such a solution feasible solution. That is, the pack-
ing puzzle asks us to determine if a given set of n centers
and n lunes have a feasible solution. We show that this
problem is NP-complete (in Section 2). The next puzzle
is the reconfiguration puzzle that asks us, for two feasi-
ble solutions S and T of the lunes with fixed centers, to
determine if S can be transformed to T by a sequence
of rotations of lunes. That is, we cannot pick up any
piece, and the only operation we can do is rotate a lune
at once. We prove that this quite restricted puzzle is
PSPACE-complete in general (in Section 3).

We turn to some tractable cases in Section 4. We
first show that one-dimensional packing puzzle is linear-
time solvable. That is, when the centers are on a line,
it can be solved efficiently. This case is inspired by one
of classic puzzles shown in Figure 1(c), which requires
exponential operations to take out. Another tractable
case is the screw puzzle (Figure 1(d)). This puzzle is
relatively new one comparing to the other classic puz-
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(a) Circle Crazy, Balloon Boogler1, Euro-Crisis2 (b) Whirligig Plate

(c) Spin Out (d) Honeycomb3

Figure 1: Lune puzzles based on (a) packing and (b) rotation. (c) A classic puzzle “Spin Out” and (d) a lune puzzle
based on screwing.

zles. Each piece forms a screw, and we can take it if we
can rotate it. In the real puzzle shown in Figure 1(d),
it is not difficult to find the first two pieces screwed out,
however, the third one to be taken out is not so easy.
(We will discuss this point in Section 4.) We will show
that this puzzle can be solved in polynomial time.

In this paper, all lunes ℓ1, . . . , ℓn are of radius 1. That
is, every lune is inscribed in a unit circle, and it cannot
be inscribed in a circle of radius r < 1. Each of n centers
ci is given by its coordinates (xi, yi). (We assume a
RAMmodel as a computational model and each number
takes a real value.) A lune is obtained from a unit disk
by bitten out some constant number of overlaps with
other disks. Therefore, a lune ℓi can be represented by
the set of unit disks that bite it off.

1https://puzzlemist.com/product/

balloon-boggler-puzzle/
2https://www.puzzlemaster.ca/browse/inventors/

jurgenreiche/16681-euro-crisis-deluxe
3https://www.puzzlemaster.ca/browse/metalpuzzles/

metalpuzzlemaste/18111-honeycomb-metal-puzzle

2 NP-completeness of packing puzzle

In Figure 1(a), we show some commercial products. We
can generalized this puzzle as follows:

Packing puzzle of bitten disks

Input: Two sets of n centers ci and n lunes ℓi for i =
1, . . . , n.

Output: Decide if we can arrange n lunes onto n cen-
ters without overlapping of lunes.

The main theorem in this section is below:

Theorem 1 The packing puzzle of lunes is NP-
complete in general.

Proof. (Outline.) It is easy to see that this problem
is in NP since we can check if a given arrangement is
feasible in polynomial time. Thus we show NP-hardness
by reducing the well-known planar 1-in-3 SAT to the
packing puzzle. (For NP-hardness of the planar 1-in-
3 SAT problem, see, e.g., [5].) Let F = C1 ∧ · · · ∧
Cm be an instance of Planar 1-in-3 SAT, where Ci is a
clause of three literals in X = {x1, x2, . . . , xn′} and X̄ =
{x̄1, x̄2, . . . , x̄n′}. We assume that the corresponding

https://puzzlemist.com/product/balloon-boggler-puzzle/
https://puzzlemist.com/product/balloon-boggler-puzzle/
https://www.puzzlemaster.ca/browse/inventors/jurgenreiche/16681-euro-crisis-deluxe
https://www.puzzlemaster.ca/browse/inventors/jurgenreiche/16681-euro-crisis-deluxe
https://www.puzzlemaster.ca/browse/metalpuzzles/metalpuzzlemaste/18111-honeycomb-metal-puzzle
https://www.puzzlemaster.ca/browse/metalpuzzles/metalpuzzlemaste/18111-honeycomb-metal-puzzle
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graph G = (V,E) for F defined by (1) V = X ∪ X̄ and
(2) E = E1 ∪ E2 where E1 = {{xi, x̄i}} for each i and
E2 = {{li, Cj}} for each literal li in Cj is planar. We
first prepare n′ + 1 different real numbers

√
2 < r1 <

· · · < rn′ < rn′+1 < 2. We construct clause gadget, wire
gadget, and variable gadget as follows.

3

Figure 2: A clause gadget.

A clause gadget consists of three congruent lunes and
three centers on a line as shown in the left of Figure ref-
fig:clause. In the figure, we describe boundaries of gad-
get instead of centers for ease to see. The distance of
each pair of consecutive two centers is rn′+1, and each
lune lacks one lens-shape corresponding to rn′+1. (We
say that this lens-shape has a thickness of rn′+1.) When
we pack three lunes onto the three centers, as shown in
the right of Figure reffig:clause, exactly one of three
lunes can have one lens-shape gap. We will use this gap
to represent one true literal. We prepare m copies of
clause gadgets with reasonable margins.

Figure 3: Wire gadgets with turns.

A wire gadget is the same as the clause gadget. It
consists of sequence of centers of uniform distance rn′+1

from one circle in a clause gadget. We prepare the same
lunes that lack one lens-shape of thickness rn′+1. The
sequence of the wire gadgets extends the clause gadget
in three directions in a natural way as shown in Figure 3.
It is easy to make a turn.
The key gadget is the variable gadget for each variable

xi. A variable gadget for the variable xi consists of
2ai + 2 centers spaced equally apart on a line with a
distance ri between them, where ai is the number of
appearance of xi in F . It contains ai+1 unit disks, one

xi xi xi xi xi xi

Figure 4: A variable gadget for ai = 3 with two ways of
packing.

lune lacking one lens-shape of thickness ri, and ai lunes
that lack 4 lens-shapes of thickness ri. It is not difficult
to see that we only have four possible ways to pack those
lunes and disks onto the centers and we only have two
possible boundaries of them as shown in Figure 4. In
Figure 4, bottom one describes xi is true, and the upper
one describes xi is false. Each wire gadget should be
connected to the circle of the variable gadget labeled by
the corresponding literal xi or x̄i.

Using the same trick between a clause gadget and a
wire gadget, we can connect a variable gadget to a corre-
sponding clause gadget in a natural way. The reduction
can be done in a polynomial time. Thus we show that
the packing puzzle has a solution if and only if F has
an assignment that satisfy 1-in-3 SAT condition.

When F has a feasible assignment, each clause have
one literal that is true. In the clause gadget, we make
a gap at the corresponding lune. It is transferred by
the wire gadget, and the corresponding position of the
variable gadget can be convex. On the other hand, if we
have a convex shape at the clause gadget since the corre-
sponding literal is false, it is transferred by the wire, and
the corresponding position of the vertex gadget should
be concave. Therefore, when F has a feasible assign-
ment, we can assign concave lune at each position cor-
responding to false literal and convex disk at each posi-
tion corresponding to true literal in the variable gadget.
Thus we can pack all the lunes.

Next we assume that the constructed packing puzzle
has a solution. We first focus on the variable gadget for
x1. The gadget allow to pack lunes of thickness r1 since
r1 < ri for all i > 1. Thus we need all lunes of thickness
r1 to pack it. But it has a gab between lunes. If we use
some lunes of thickness ri with i > 1 to fill the gap in
the gadget for x1, it is easy observe that we cannot pack
the gadget for xi. Using this argument repeatingly, we
can observe that we have to use all lunes of thickness ri
to fill the gadget for the variable xi. Then, we have to
use all lunes of thickness rn′+1 to fill the wire gadgets
and clause gadgets because we have no gap in these
gadgets. Thus, eventually, we use all unit disks to pack
the gadgets for xi. Therefore, when the packing puzzle
has a solution, the way of packing gives us the feasible
assignment of F , which completes the proof. □
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3 PSPACE-completeness of reconfiguration puzzle

In the puzzle shown in Figure 1(b), the lunes are all the
same shape and they are pinned at the uniform square
grid. This puzzle and its generalization has been inves-
tigated in [6] as the cyclic shift puzzle. In this paper,
we introduce a natural variant of our rotation puzzles
in the context of the combinatorial reconfiguration (see,
e.g., [2]):

Reconfiguration puzzle of lunes

Input: Two sets of n centers ci and n lunes ℓi for i =
1, . . . , n, and two feasible arrangements S and T of
the lunes on the centers.

Output: Decide if we can reconfigure from S and T by
a sequence of rotations of lunes.

We note that all lunes are pinned at their centers, and
we can just rotate them. We also assume that we rotate
one lune at a time. This contrasts to the other reconfig-
uration problems that allow to shift (or slide), or even
jump as discussed in [3].

The main theorem in this section is below:

Theorem 2 The reconfiguration puzzle of lunes is
PSPACE-complete in general.

Proof. (Outline.) We reduce the nondeterministic con-
straint logic (NCL) proposed and discussed in [4]. As
an NCL instance, we are given a directed graph G0 =
(V0, E0) with an edge e in E0. In each step, we can
obtain Ei+1 from Ei by flipping an edge. The NCL
asks if a specific edge e can be flipped or not, and it is
PSPACE-complete in general. Further more, in [4], it
is still PSPACE-complete even if (1) G0 is planar, (2)
V0 contains two types of nodes called “AND” and “OR”
in [4, Theorem 5.12], and (3) each “OR” has only one
“true” assignment [4, Theorem 5.13].

Therefore, essentially, it is sufficient to show that the
“AND” node and the “OR” node in the NCL can be
realized by our reconfiguration puzzle of lunes like the
other puzzles discussed in [4, Chapter 9]. The wire gad-
get is already described in Figure 3. In the wire gadget,
the wire send “a lens-shape gap” as a signal. There-
fore, the AND gadget can be realized easily as shown in
Figure 5. When it catches two lens-shape gaps at both
sides of the central disk, the central lune can be ro-
tated in 180◦, and it can transmit the gap to down. We
need some device for realizing the OR gadget as shown
in Figure 6. In Figure 6, we cannot rotate the central
lune since it is locked by two top neighbors. However,
once one of the two neighbors is free by receiving a lens-
shape gap as shown in Figure 7, it can be rotated until
it strikes the other neighbor (in the figure, the central
lune receives the lens-shape gap from left, and it rotated
in counterclockwise, and left small gap comes to down).

Then the down neighbor can be rotated freely, and it
can provide a big lens-shape gap at left side to down.

Then, one of two small gaps at the central lune can
be down, and its down neighbor can be rotated.

□

4 Polynomial-time solvable puzzles

4.1 One-dimensional packing puzzle

The “Spin Out” shown in Figure 1(c) is a classic puz-
zle similar to the other famous classic puzzle “Chinese
Ring”. They are uniformly constructed and both re-
quire exponential number of operations like the Hanoi
Tower. Inspired by the Spin Out, we can consider the
packing puzzle of lunes discussed in Section 2 in one
dimension. That is, we consider the following packing
puzzle in 1D:

Packing puzzle of lunes in 1D

Input: Two sets of n centers ci and n lunes ℓi for i =
1, . . . , n such that (1) the centers are assumed to
be equally spaced on a line with a distance r < 1
between them, and (2) each lune is (a) a unit disk,
(b) it lacks one lens-shape of thickness r, or (c)
it lacks two lens-shape of thickness r on opposite
sides.

Output: Decide if we can arrange n lunes onto n cen-
ters without overlapping of lunes.

This case can be solved in linear time:

Theorem 3 The packing puzzle of lunes in 1D is linear
time solvable.

Proof. (Outline.) Let La, Lb, Lc be the sets of lunes in
the groups (a), (b), and (c), respectively. When La ̸= ∅,
we can assume that one element should be put on c1
without loss of generality. Any pair of lunes in La can-
not be adjacent. Therefore, the elements of La must be
placed at least two apart. Between them, we have to use
at least one element in Lc. We also observe that we can
put each element in Lb in an arbitrary way between the
elements in La and Lc. Thus we can pack all elements
in La ∪ Lb ∪ Lc if and only if (|La| − 1) < |Lc|, which
can be checked in linear time. □

4.2 Screw puzzle

The Honeycomb Metal Puzzle is a new product released
in 2023 (Figure 1(d)). We can consider this puzzle is a
variant of a lune puzzle based on screwing, which we
name as the disassemble puzzle. For a given arrange-
ment of lunes, we can solve the disassemble puzzle in
polynomial time when we restrict ourselves to just the
rotation operation:



215 CCCG 2025, Toronto, Canada, August 13–15, 2025

Input Input

Output

Figure 5: An AND gadget.

Input Input

Output

Figure 6: An OR gadget.

Input Input

Output

Figure 7: How an OR gadget transmits
a signal from left to down.

Figure 8: How to disassemble the Honeycomb Metal Puzzle.

Lemma 4 The disassemble puzzle of lunes can be
solved in polynomial time when the possible operations
are restricted to rotations at the center of each lune only.

Proof. For a given arrangement, we can construct a
directed graph G = (V,A) as follows. First, we let V
be the set of lunes ℓi with i = 1, 2, . . . , n. Then the set
A contains a directed edge (ℓi, ℓj) if and only if ℓi is an
obstacle that prevents ℓj from rotating. It is easy to
observe that we can screw out ℓi from this arrangement
when ℓi has indegree 0 on G. If we have such a lune, we
screw it out and remove it from V . Repeating this pro-
cess, we can disassemble, and we cannot otherwise. □

As observed in the introduction, in the arrangement
in Figure 1(d), we can screw out the first two lunes.
However, we cannot screw out the third one in place.
That is, this disassemble puzzle has no solution if the
possible operations are restricted to rotations at the cen-
ters of lunes only.

In fact, we have to rotate the third lune along a dif-
ferent center to take out it (Figure 8). It is not difficult
to characterize when a lune can be moved locally in this
way, as it depends on the conditions of its neighbors.
(A similar analysis can be found in the similar puzzle
based on hexagonal grid; see, e.g., [7].) For this com-
mercial product, it is not difficult to find the way of
disassembling. The more general case remains open.
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