
216 CCCG 2025, Toronto, Canada, August 13–15, 2025

Input-Sensitive Reconfiguration of Sliding Cubes

Hugo A. Akitaya* Matias Korman� Frederick Stock*

Abstract

A configuration of n unit-cube-shaped modules (or
robots) is a lattice-aligned placement of the n modules
so that their union is face-connected. The reconfigura-
tion problem aims at finding a sequence of moves that
reconfigures the modules from one given configuration
to another. The sliding cube model (in which modules
are allowed to slide over the face or edge of neighboring
modules) is one of the most studied theoretical models
for modular robots.
In the sliding cubes model we can reconfigure between

any two shapes in O(n2) moves ([Abel et al. SoCG
2024]). If we are interested in a reconfiguration algo-
rithm into a compact configuration, the number of moves
can be reduced to the sum of coordinates of the input
configuration (a number that ranges from Ω(n4/3) to
O(n2), [Kostitsyna et al. SWAT 2024]). We introduce
a new algorithm that combines both universal reconfig-
uration and an input-sensitive bound on the sum of co-
ordinates of both configurations, with additional advan-
tages, such as O(1) amortized computation per move.

1 Introduction

Modular self-reconfigurable robotic systems offer
several advantages over typical robotic systems. Such
systems are composed of a set of robotic units (called
modules) that can communicate, attach, detach, and
move relative to each other. This means modules can
move to change the overall system’s shape, providing
versatility to perform unforeseen tasks. While advanta-
geous, the increased degree of freedom also incurs an al-
gorithmic challenge, as it is not easy to determine how to
use the module’s operations so that the union of all mod-
ules creates a specific shape (this is known as the re-
configuration problem). The algorithmic community
has investigated the reconfiguration problem for many
variations of modular robots, be it the type of moves
allowed (sliding [5, 9, 10], pivoting [3, 13], and so-called
square “atoms” [7, 8]) or shape (such as hexagons [4]).

We investigate one of the most established mod-
els, which is called the sliding (hyper-)cube model:

*University of Massachusetts Lowell, Lowell, USA,
{hugo akitaya@, frederick stock@student.}uml.edu.
Supported by NSF grant CCF-2348067.

�Siemens Electronic Design Automation, Wilsonville, USA,
matias.korman@siemens.com

(a) (b)

Figure 1: (a) Slide and (b) Convex transition.

modules are lattice-aligned unit (hyper-)cubes where
two modules are adjacent if they share a face (i.e.,
a (d − 1)-dimensional facet). In this model, two types
of moves are allowed: a module can slide along the co-
(hyper-)planar faces of two other adjacent modules, or it
can slide along two orthogonal faces of another module
(see Fig. 1).

The reachability problem asks whether, given two
configurations with n modules, there exists a sequence
of moves that can transform one into the other. If the
answer is always ‘yes’ we say that the model admits
universal reconfiguration.

The first universal result for the two dimensional slid-
ing model was obtained by Dumitrescu and Pach [9]
with a reconfiguration algorithm that required O(n2)
moves. This result could be seen as optimal since some
instances require Ω(n2) moves. The 2-dimensional re-
sult was afterwards extended to three and higher dimen-
sions in an informal publication of Abel and Komin-
ers [2]. Their paper claimed universal reconfiguration
and that O(n3) many moves were always sufficient.

Other research [3] focused on variations of the model,
in both the shape of the modules and the type of move-
ments that were allowed. They obtained characteriza-
tion of which variations of the model have universal re-
configuration. For the versions in which no universal
reconfiguration algorithm exists, they showed that de-
termining if a particular instance can be reconfigured
into a target configuration is PSPACE-complete.

Recently there have been two simultaneous, indepen-
dent results in three dimensions. Abel et al. [1] for-
mally published their preliminary result, reducing the
number of moves to O(n2). In the same paper, the au-
thors explain how the algorithm can be made in-place
and input-sensitive (the exact bound depends on the
dimension of the bounding box of both configurations).
In-place means throughout the reconfiguration there
are never more than a constant number of modules out-
side the bounding boxes of the start and end config-
uration. Further, these modules are never more than

37th Canadian Conference on Computational Geometry, 2025 217

distance 1 from the bounding box 1. Parallel to [1],
Kostitsyna et al. [12] independently produced a differ-
ent input-sensitive reconfiguration algorithm: a config-
uration C can be reconfigured into a compact con-
figuration, intuitively, a shape where all modules are
clumped together without holes (formal definition given
in Section 2). Their algorithm takes O(

∑
m∈C1

∥m∥1)
sliding moves where ∥m∥1 denotes the L1 norm of the
position of a module m. This result has a better input-
sensitive bound, but is slightly limited: they only show
how to reconfigure into a compact configuration. Since
there is more than one compact configuration with the
same number of modules, this does not directly lead
to a universal reconfiguration strategy. Reconfiguration
between compact configurations is significantly simpler
than compactification, but does not immediately follow.

This paper we improve on both [1] and [12]: we give
a universal reconfiguration whose number total num-
ber of moves depends on the sum of input and target
coordinates (O(

∑
m∈C1

∥m∥1 +
∑

m∈C2
∥m∥1). Since

configurations are connected, it is easy to see that this
bound is in Ω(n4/3) ∩ O(n2) (when all modules form a
solid cube or when they form the 1-skeleton of a larger
cube, respectively). Our main result is formally stated
as follows.

Theorem 1 Given two configurations C1 and C2 with
n cube modules in 3 dimensions where all modules lie in
the positive xyz orthant, there is an in-place reconfigura-
tion between them that uses at most 18(

∑
m∈C1

∥m∥1+∑
m∈C2

∥m∥1)+120n+O(1) sliding moves where ∥m∥1
denotes the L1 norm of the position of a module m.
Such a reconfiguration can be computed in O(1) amor-
tized time per sliding move.

In our algorithm we use a constant number of aux-
iliary “helper” modules that will allow nearby modules
to move. We follow existing literature [3] and refer to
the auxiliary modules as musketeers. The multiplica-
tive factor 120 may seem large, we note that our algo-
rithm uses six musketeer modules, so this constant is
better characterized by 20n moves per musketeer mod-
ule. Further, since we reconfigure between C1 and C2 by
reaching an intermediate configuration, this means that
we actually need 10n moves per musketeer to transform
any configuration of n modules into compact form.

Although the main emphasis is in the total number of
moves required, it is also interesting to bound the time
needed to compute the sequence of moves needed to re-
configure between two configurations. Our algorithm
can compute each move in O(1) amortized time. Al-
though the computation time is not directly addressed

1Traditionally, in-place algorithms are a bit more restrictive,
only one module is allowed outside the bounding box, making
both constants exactly 1. In this paper we relax the condition for
ease of description.

in the previous papers, it is not hard to see that the
algorithm of [1] also achieves O(1) amortized (after a
BFS traversal on both configurations, each step is easily
computed in O(1) time). On the other hand, a näıve im-
plementation of [12] would require Θ(n) time per move
as a global search must be executed each time. Due to
space constraints some proofs are omitted. Details can
be found in the extended version of this paper [6]

2 Definitions and Preliminaries

A configuration C of n unit cube modules is a set of
n cells in the cube lattice. A cell is occupied if it is
in C or empty otherwise. We abuse notation by some-
times referring to occupied cells as modules. Two cells
are adjacent if they share a face. Let the adjacency
graph GC be the graph whose vertices are the cells in
C and edges are defined by pairs of adjacent occupied
cells. We call C connected if GC is connected. A
module is articulate if it is a cut vertex in GC , and
nonarticulate otherwise. For an occupied cell m, the
notation m refers to the module at cell m. Note that a
connected configuration C defines a polycube. We de-
note by ∂C the boundary of C. The outer boundary
of C is the boundary of the unbounded component of
the complement C of C. We say a module is “in the
outer boundary” if at least one of its faces lies in the
outer boundary of C.

A move is an operation that transforms an n-module
configuration C into another C ′ so that C ∩ C ′ is a
configuration of n− 1 modules (and thus C \C ′ is a set
with one module). We require the single backbone
condition: a move between connected configurations
C and C ′ is only allowed if C∩C ′ is also connected. We
say that the module in position C\C ′ moved to position
C ′ \ C. In other words, the single-backbone condition
requires each moving module to be nonarticulate.

The sliding model allows two types of moves (refer
to Fig. 1):

� A slide moves a module a from a to an adjacent
empty cell b, and requires that there are adjacent
occupied cells a′ and b′ such that a is adjacent to
a′ and b is adjacent to b′.

� A convex transition moves a module a from a
to an empty cell b where a and b share a common
edge e, and are both adjacent to an occupied cell c,
and requires that the cell d /∈ {a, b, c} that contains
e is empty. Note that every edge e is incident to
exactly 4 cells.

Note a slide requires the final cell b to be empty, and
a convex transition requires the target b as well as an in-
termediate cell to be empty. These are called the free-
space requirements of the moves. If these require-
ments are not met, performing either of these moves

218 CCCG 2025, Toronto, Canada, August 13–15, 2025

would cause two modules to collide. Note that a mod-
ule might be nonarticulate but is not allowed to move
if the free-space requirements mentioned above are not
satisfied. We call a module movable if it is nonarticu-
late and satisfies the free-space requirements of either a
slide or a convex transition.
We may refer to a cell using the coordinates of its

closest corner to the origin. Hence cell (0, 0, 0) corre-
sponds to the unit cube with vertices (0, 0, 0), (0, 0, 1),
(0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0) and (1, 1, 1). We de-
note by ∥m∥1 the L1 norm of the cell occupied by a
module m. For example, if m occupies (xm, ym, zm),
then ∥m∥1 = |xm|+ |ym|+ |zm|.
We assume that both configurations are contained in

the positive orthant and that a corner of the bounding
box of either configuration is the origin.

Our algorithm uses the slice graph from Fitch and
Rus [11]. For a connected configuration C of n modules
and z0 ∈ Z, the slice at height z is C ∩ {z = z0} (the
modules whose z-coordinate is equal to z0). Each max-
imally connected component in a slice is called a clus-
ter. Each cluster defines a vertex of the slice graph.
Two vertices are connected if at least one module in
each cluster share a face (see Fig. 2).

Figure 2: A configuration and its slice graph.

A cell c dominates another cell c′ if c′ is contained
in the minimum axis aligned bounding box containing c
and the origin. We also say that c = (x, y, z) is below
c′ = (x′, y′, z′) if x = x′, y = y′ and z < z′ (similarly, we
define above in a similar way. A module is called com-
pact if every cell dominated by it is occupied. A module
is called quasi-compact if every cell that is dominated
by it and is not below it is occupied. A configuration
or cluster is compact (resp., quasi-compact) if ev-
ery module in it is compact (resp., quasi-compact). A
cluster is extremal if not all of its modules are quasi-
compact, and all adjacent modules above it (if any) are
quasi-compact. (Note that a cluster above a non-quasi-
compact cluster may be quasi-compact.)

2.1 General strategy.

A common technique in reconfiguration algorithms is to
define a canonical configuration C∗ and describe a se-
quence of moves that transform a given configuration
C into C∗. Because the moves are reversible, this im-
plies a solution for the reachability problem: Given two
configurations C and C ′, one can obtain reconfigura-
tion sequences from both to C∗, and then compose the

reconfiguration from C to C∗ with the reverse of the
reconfiguration from C ′ to C∗. Instead of a single con-
figuration, we use a class of canonical configurations: all
compact configurations of n modules. The strategy is
to compute a sequence of moves to transform C and C ′

to two configurations D and D′ of this class. We then
transform C into D, then D into D′, and finally recon-
figure D′ to C ′. Thus, our algorithm can be divided into
two phases: reconfiguration between a given configura-
tion and a compact one (Section 3); and reconfiguration
between two compact configurations (Section 5).

3 Compacting configurations

In this section, we describe an algorithm we call
Compactify, which reconfigures a given configura-
tion into a compact one. As a preprocessing step,
use LocateAndFree (from [1]) to obtain six movable
modules on the outer boundary. These modules will be
referred to as musketeers.

Once done, the algorithm repeatedly picks an ex-
tremal cluster S and uses the musketeers to move ev-
ery module in S without a lower neighbor to a position
with a smaller z-coordinate. By doing so, S will merge
with at least one cluster in the slice below. Initially, a
module is only moved if the position below it is empty.
Otherwise, it is left where it was. We call these leftover
modules stragglers. We use another procedure Fix, to
find a suitable position for the stragglers. The result
is that every module previously in S either has a lower
z-coordinate or becomes quasi-compact. By iterating
over all clusters we will finish with a compact configu-
ration or all modules in the z = 0 plane. Pseudocode of
Compactify is presented in Alg. 1 (in Section A).

3.1 Obtaining Musketeers

The main role of the musketeers will be to provide
temporary connectivity to nearby modules. We use a
subroutine LocateAndFree from [1] to gather them
above the highest cluster.

Lemma 2 A constant number k of musketeer modules
can be positioned on the outer boundary of any configu-
ration in at most 4kn+O(1) moves.

3.2 Lowering Modules

Given an extremal cluster S let S∗ be the set of non-
quasi-compact modules in S, and let T be a minimum
Steiner tree of S∗ using the quasi-compact modules in S
(if any) as Steiner vertices. We process T in post-order,
rooted arbitrarily, moving it to the z-layer below if it
has no lower neighbor. Lowering is accomplished via
the musketeer modules (shown in blue in Figs. 3 and 4).

37th Canadian Conference on Computational Geometry, 2025 219

(a) (b) (c)

(d) (e)

Figure 3: The four moves used to lower a straight
degree-2 module in an extremal cluster using the mus-
keteers for connectivity. The left of each figure shows
the top view of the three relevant z-layers. ⊙ and ⊗
represent arrows going into and out of the plane, re-
spectively. The moving module is highlighted in green.

(a) (b) (c)

(d) (e)

Figure 4: Four moves used to lower a degree-4 module.

In red we show auxiliary modules that stablish the con-
nectivity between the processed and unprocessed parts
of T . If p has a lower neighbor, it cannot move directly
down, thus it becomes a straggler. (After completing
our traversal of T we return and “fix” them.)

Since we visit modules in post order, we can guarantee
the children of the module currently being processed (if
any) have been already processed. This implies that,
when processing a module, the neighbors in the same
z-layer are either red or is the parent of the module in
T . The exact strategy depends on the degree of p in T .
The strategies for a straight degree-2 (child and parent
share either x or y coordinate) and degree-4 is shown in
Figs. 3 and 4, respectively. Degree-3 and bent degree-2
modules are handled similarly as degree-4. Details for
other cases are in the full version [6].

Lemma 3 Given a Steiner tree T of the non-quasi-
compact modules of an extremal cluster S and 6 muske-
teer modules positioned above T as in Fig. 3a or Fig. 4a,
let ℓ be the number of modules that were lowered and s be
the number of remaining stragglers (|T | = ℓ+ s). Then,
17ℓ+13s moves suffice to move down by one unit every
module in T that has no lower neighbor while maintain-
ing connectivity.

Proof sketch. Each module is visited on average 2
times by the musketeers: for every high-degree module
in T (degree 3 or 4) there is a leaf that does not need to
be visited. Each visit costs 6 moves totaling 12 moves
per module. Compactify moves stragglers toward the
leaves of T and each module is the base of a straggler at
most once (13 moves per module). The lowered modules
cost 4 extra moves depicted in Fig. 3 or Fig. 4. □

3.3 Handling straggler modules

After completing our post-order traversal, there is at
least one straggler m. Since m is not quasi-compact,
there is at least one empty position in the cuboid region
dominated by m and not directly below it. In Fix(m)
we search for such an empty position p and effectively
move m to p, either directly or through a chain of moves
that fill p and leave m empty. The pseudo-code for Fix
is presented in Alg 2 (in the Appendix) .

For a given cell p = (xp, yp, zp), we denote by □(p)
the set of cells (xp − i, yp − j, zp) for all 0 ≤ i ≤ xp

and 0 ≤ j ≤ yp, i.e., the cells intersecting the minimum
axis aligned horizontal square containing (0, 0, zp) and p.
We define that a straggler is fixable if every module in
□(m) \ {m} in the same cluster of m is quasi-compact.
We first try moving m closer to the origin in □(m)
(Fig. 5a). If we can’t, either (i) m moves to a z-layer
below it or becomes quasi-compact (and we are done);
(ii) m is on the edge of the bounding box (and we can
move through the plane x = −1 or y = −1 to an empty
position); or (iii) m is blocked by other modules in the
same layer that are quasi-compact (as in Fig. 5). Since
m is fixable and non-quasi-compact, there is an empty
position p dominated by m in column (xm − 1, ym, .)
or (xm, ym − 1, .), adjacent to a module q in column
(xm − 1, ym − 1, .) (Fig. 5a). A sequence of moves fills
p and frees (xm− 1, ym− 1, zm) (Fig. 5b). We can then
fill that empty position while freeing m’s cell (Fig. 5c).

Lemma 4 If m is fixable, Fix(m) does not disconnect
the configuration C, and performs at most ∥m−p∥1+2
moves. After Fix(m), if m remained in the same z-
layer, m is now quasi-compact.

Proof. Since m is a straggler, if it is the only module
moved by Fix(m), it is clear that connectivity is pre-
served. Lines 1–6 move m monotonically towards the
origin, except potentially for the move that brings m

220 CCCG 2025, Toronto, Canada, August 13–15, 2025

q

(a)

q

(b)

q

(c)

q

(d)

Figure 5: Illustration of the moves in Fix (a) line 2, (b)
lines 9–11, and (c) line 12. (d) After Fix, m becomes
quasi-compact.

outside of the bounding box (line 6). The bound on the
moves holds in this case, and if m moved down (in z)
the claim holds.

It remains to prove the claim for case (iii), i.e., lines 8–
12. By the fact that m is fixable, when we reach line 8,
cells m+ (−1, 0, 0), m+ (0,−1, 0) and m+ (−1,−1, 0)
must be filled by quasi-compact modules. This im-
plies that all cells with nonnegative coordinates strictly
smaller than m’s are full. Since m is not yet quasi-
compact, there must exist at least one empty position
dominated by m and not directly below it. Indeed, all
such empty cells must be in columns (xm − 1, ym, .) or
(xm, ym−1, .), otherwise m+(−1, 0, 0) or m+(0,−1, 0)
would not be quasi-compact. Then, p exists and q is a
compact nonarticulate module. Thus, line 9 maintains
connectivity. Note that by the choice of p, every cell
edge-adjacent in the same z-layer to a module moved
by line 11 is full except for the cell in the column xm.
Thus, the neighborhood of the moving module remains
connected and line 11 maintains connectivity. When we
reach line 12, the cell at (xp, yp, zm − 1) is full (by the
choice of p). The fact that m is a straggler implies that
every edge-adjacent cell abovem have been already pro-
cessed by Fix, so they are quasi-compact and thus do
not require m or (xp, yp, zm) for connectivity. Then,
both moves in line 12 maintain connectivity. Except for
line 9 and the move from (xp, yp, zm) to m+(−1,−1, 0)
(line 12), all the moves are monotonic in the direction
p −m. Thus the total number of moves is as claimed.

□

3.4 Compactify for planar configurations

With a few small adjustments, our algorithm can be ap-
plied to planar configurations (when all modules lie in
the z = 0 plane). Note that we allow using planes z = 1
and z = −1 to move musketeers and stragglers. The
clusters are now defined by the y-slice graph (maximal
components induced by a fixed y coordinate). Lowering
modules follows the same principle, except that we lower
the y-coordinates of the modules (cases are simpler, as
modules have degree 2 or less within the cluster). Fix
also becomes substantially simpler as stragglers can sim-
ply move to the closest dominated empty cell through
the z = −1 plane.

4 Analysis of Compactify

Lemma 5 Compactify(C) transforms a configura-
tion C into a compact configuration maintaining con-
nectivity.

Proof sketch. The claim is mostly established by The-
orem 3 and lemma 4. We process the stragglers in in-
creasing order of L1 norm, guaranteeing that the first
straggler is fixable. By Lemma 4, the straggler either
moves down or becomes quasi-compact, making the sub-
sequent processed straggler fixable. □

Lemma 6 A sequence of 17
∑

m∈C ∥m∥1 +60n+O(1)
moves suffices to transform a configuration C with n
modules into a compact one.

Proof sketch. By Lemma 3, we can charge 17 moves
to the decrease of the z-coordinate of the lowered mod-
ules. By Lemma 2 2 we can obtain six musketeers in
24n+O(1) moves. While traversing C, every musketeer
walks on the bottom face of each module of a cluster
at most once, and walks on the side face of one mod-
ule exactly once (see Fig. 6 for example). This amounts
6n + O(1) musketeer movements (each cluster is only
traversed in this way once). In the planar version of
Compactify the musketeers can move in the positive y-
direction using the bottom faces, which adds 6n moves.
The total amounts 12n + O(1) musketeer movements.
The musketeers may walk on the top face of a module
at most two times, 24n moves. Overall, the musketeers
preform 24n + 12n + O(1) = 36n + O(1) moves. Com-
bined with the bound from Lemma 2, we get a total
24n+ 36n+O(1) = 60n+O(1) moves. □

Lemma 7 Compactify has runtime that is within an
amortized O(1) factor of the moves performed.

Proof. Whenever a musketeer moves, it is either fol-
lowing a constant size schedule of moves such as Fig. 3,
or is traveling along a shortest path from one cluster
to another. The former case clearly only requires O(1)

37th Canadian Conference on Computational Geometry, 2025 221

Figure 6: The path of an upwards traversal of muske-
teers from one cluster to another. Their start and end
positions marked by blue circles.

computation, and in the latter, computing the path re-
quires time proportional to the length of the path, hence
amortized O(1) computation per movement. The only
section of this algorithm where an O(1) computation
cost is not simple is Fix, when we must locate an appro-
priate empty position p. We show if each module stores
a constant amount of information, these positions can
be located efficiently. Assume that initially each mod-
ule m has knowledge of the following three properties:
1) Is m compact? 2) Is m quasi-compact? 3) Is every
position of □(m) filled?

Note, each of these are transitive, and, to answer
these questions, m need only query its neighbors with
smaller sum of coordinates. Consequently, if m moves,
recomputing if □(m) is full takes only O(1) time. If m
becomes (quasi-)compact it may be the case that many
modules also become (quasi-)compact. While this may
affect many more modules than the number of moves
performed, a module can become (quasi-)compact only
once. Therefore, in aggregate these updates will only
take O(n) time, which can then be amortized over the
number of moves to O(1) time.

If xm = 0 or ym = 0 (case(ii)), Fix attempts to
move it to an empty dominated position p. If m is not
compact, then p exists. Therefore we can determine if p
exists in O(1) time. If m is not compact, we can locate
p with ||m − p||1 queries: Checking positions directly
below m (from m) we will either find an empty position
(and we are done) or a compact module by the fact that
m is fixable. We have found the z coordinate of p and
we can find it by looking in the −x or −y direction (note
that m and p lie in the same plane xm = 0 or ym = 0).

In case (iii), since we know p is either in column (xm−
1, ym, .) or (xm, ym−1, .), we can find it with ||m−p||1
queries with a linear search alternating between the two
columns. □

5 Reconfiguring Between Compact Configurations

Lemma 8 Given two compact configurations C1 and
C2 with n modules where all modules lie in the posi-
tive xyz orthant, we can reconfigure one into the other
by using at most

∑
m∈C1

∥m∥1 +
∑

m∈C2
∥m∥1 sliding

moves.

Proof. We use induction on |C1 \C2|. The base case is
when |C1 \C2| = 0 and thus C1 = C2 and we are done.
Otherwise, we claim that there is a modulem1 ∈ C1\C2

whose cell is not dominated by any other module in
C1 ∪ C2. We prove this by contradiction: assume that
every module if C1 \ C2 is dominated by some module
in C1 ∪ C2. Because domination establishes a partial
order, there must exist a module m ∈ C1 \ C2 that us
dominated by a module in m′ ∈ C1 ∩ C2. That is, we
have found a module m is only present in C1 and is
dominated by m′ ∈ C1 ∩ C2 that is present in both C1

and C2. However, this is a contradiction to the fact that
C2 is compact. The interesting property of m1 is that
C1 \ {m1} is compact.

Using a symmetric argument, we show that there
exists a cell m2 ∈ C2 \ C1 so that every dominated
cell is occupied in C1 ∩ C2. For contradiction, as-
sume no such module exists. Let m be the module
in C2 \ C1 with smallest ∥m∥1. Since C2 is compact,
all cells that m dominates are occupied in C2. Let
m′ ∈ C2 \ C1 be a module dominated by m, which
must exist by assumption. Then ∥m′∥1 < ∥m∥1, con-
tradicting the choice of m. We conclude that C1∪{m2}
is compact. Furthermore, the two claims combined im-
ply that C ′

1 = C1 ∪ {m2} \ {m1} is compact. Then
|C1 \ C2| = |C ′

1 \ C2|+ 2 as desired.

To complete the proof we must show that the recon-
figuration can be done in the claimed number of moves.
Note that m1 and m2 must both be in the outer bound-
ary of C1 and C ′

1 respectively. By definition of compact,
the boundary of C1\{m1} that is not on the x = 0, y = 0
or z = 0 planes is an x-, y-, and z-monotone surface.
Thus, the shortest path from m1 to m2 on this surface
is also monotone and, hence its length is upper bounded
by ∥m1∥1 + ∥m2∥1. □

6 Conclusion

Algorithmic bounds have been derived from the number
of modules [2,9], to dimensions of bounding boxes [1,5]
and eventually the sum of coordinates (this paper and
[12]). We note that, none are optimal if the starting and
target configurations are far from compact but very sim-
ilar. Is there a better parameter to bound the length of
reconfiguration between configurations? Such a bound
is also important for approximation algorithms, of which
there are none. Note that in general, shortest reconfig-
uration is known to be NP-complete [5].

Another avenue of research would be parallelization
where we look into the makespan (i.e., time required
to execute all moves when we allow parallel moves).

222 CCCG 2025, Toronto, Canada, August 13–15, 2025

References

[1] Z. Abel, H. A. Akitaya, S. D. Kominers, M. Korman,
and F. Stock. A universal in-place reconfiguration al-
gorithm for sliding cube-shaped robots in a quadratic
number of moves. In SoCG, pages 1:1–1:14, 2024.

[2] Z. Abel and S. D. Kominers. Universal reconfiguration
of (hyper-)cubic robots. arXiv preprint, 2008.

[3] H. A. Akitaya, E. M. Arkin, M. Damian, E. D.
Demaine, V. Dujmović, R. Flatland, M. Korman,
B. Palop, I. Parada, A. v. R. Renssen, and V. Sacristán.
Universal reconfiguration of facet-connected modular
robots by pivots: The O(1) Musketeers. Algorithmica,
83:1316–1351, 2021.

[4] H. A. Akitaya, E. D. Demaine, A. Gonczi, D. H.
Hendrickson, A. Hesterberg, M. Korman, O. Korten,
J. Lynch, I. Parada, and V. Sacristán. Characterizing
universal reconfigurability of modular pivoting robots.
In SoCG, volume 189, pages 10:1–10:20, 2021.

[5] H. A. Akitaya, E. D. Demaine, M. Korman, I. Kostit-
syna, I. Parada, W. Sonke, B. Speckmann, R. Uehara,
and J. Wulms. Compacting squares: Input-sensitive
in-place reconfiguration of sliding squares. In SWAT,
pages 4:1–4:19, 2022.

[6] H. A. Akitaya, M. Korman, and F. Stock. Input-
sensitive reconfiguration of sliding cubes. arXiv
preprint, 2025.

[7] G. Aloupis, S. Collette, M. Damian, E. D. Demaine,
R. Flatland, S. Langerman, J. O’Rourke, S. Ra-
maswami, V. Sacristán, and S. Wuhrer. Linear recon-
figuration of cube-style modular robots. Computational
Geometry, 42(6-7):652–663, 2009.

[8] G. Aloupis, S. Collette, E. D. Demaine, S. Langerman,
V. Sacristán, and S. Wuhrer. Reconfiguration of cube-
style modular robots using o(logn) parallel moves. In
ISAAC, pages 342–353. Springer, 2008.

[9] A. Dumitrescu and J. Pach. Pushing squares around.
Graphs and Combinatorics, 22(1):37–50, 2006.

[10] A. Dumitrescu, I. Suzuki, and M. Yamashita. Motion
planning for metamorphic systems: Feasibility, decid-
ability, and distributed reconfiguration. IEEE Transac-
tions on Robotics and Automation, 20(3):409–418, 2004.

[11] R. Fitch, Z. Butler, and D. Rus. Reconfiguration plan-
ning for heterogeneous self-reconfiguring robots. In
IROS, volume 3, pages 2460–2467. IEEE, 2003.

[12] I. Kostitsyna, T. Ophelders, I. Parada, T. Peters,
W. Sonke, and B. Speckmann. Optimal in-place com-
paction of sliding cubes. In SWAT, pages 31:1–31:14,
2024.

[13] C. Sung, J. Bern, J. Romanishin, and D. Rus. Recon-
figuration planning for pivoting cube modular robots.
In ICRA, pages 1933–1940. IEEE, 2015.

A Pseudocode of Compactify and Fix

Algorithm 1 Compactify(C)

1: Compute the slice graph of C.
2: while C is not quasi-compact (ignoring slice z = 0)

do
3: Let R be the cluster where the musketeers cur-

rently sit. DFS on the slice graph from R, prefer-
ring upward edges (in the z direction). Let S be
the first extremal cluster (with possibly S = R).

4: Move the musketeers to S.
5: Lower non-quasi-compact modules in S as in Sec-

tion 3.2.
6: Let M be the set of stragglers m sorted by ∥m∥1.

7: for m ∈ M do
8: Fix(m)
9: while ∃m where m+(0, 0,−1) is empty and zm > 0

do
10: Slide m down
11: if C is not compact then
12: Apply the planar version of Compactify on slice

z = 0

Algorithm 2 Fix(m)

1: while m can move monotonically in the direction
−m do

2: Move m closer to the origin
3: if m moved to a lower z-coordinate or became

quasi-compact then
4: return
5: if xm = 0 or ym = 0 and m is not compact then
6: Move m (through the plane x = −1 or y = −1)

to a dominated empty cell p
7: else
8: Let p be the closest dominated empty position

to m where xp = xm − 1 (resp., yp = ym − 1),
and q be the module at p+ (0,−1, 0) (resp., p+
(−1, 0, 0))

9: Move q to p and let q be the cell left empty orig-
inally occupied by q

10: for i ∈ {1, . . . , (zm − zq)} do
11: Move the module at q+(0, 0, i) to q+(0, 0, i−1)

via slide
12: Slide the module at (xp, yp, zm) tom+(−1,−1, 0)

and slide m to (xp, yp, zm)
13: return

	Introduction
	Definitions and Preliminaries
	General strategy.

	Compacting configurations
	Obtaining Musketeers
	Lowering Modules
	Handling straggler modules
	Compactify for planar configurations

	Analysis of Compactify
	Reconfiguring Between Compact Configurations
	Conclusion
	Pseudocode of Compactify and Fix

