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Abstract

We introduce and study the Marco Polo problem,
which is a combinatorial approach to geometric localiza-
tion. In this problem, we are told there are one or more
points of interest (POIs) within distance n of the origin
that we wish to localize. Given a mobile search point,
∆, that is initially at the origin, a localization algorithm
is a strategy to move ∆ to be within a distance of
1 of a POI. In the combinatorial localization problem
we study, the only tool we can use is reminiscent
of the children’s game, “Marco Polo,” in that ∆ can
issue a probe signal out a specified distance, d, and
the search algorithm learns whether or not there is a
POI within distance d of ∆. For example, we could
imagine that POIs are one or more hikers lost in a
forest and we need to design a search-and-rescue (SAR)
strategy to find them using radio signal probes to a
response device that hikers carry. Unlike other known
localization algorithms, probe responses do not inform
our search algorithm of the direction or distance to
a POI. The optimization problem is to minimize the
number of probes and/or POI responses, as well as
possibly minimizing the distance traveled by ∆. We
describe a number of efficient combinatorial Marco
Polo localization strategies and we analyze each one in
terms of the size, n, of the search domain. Moreover,
we derive strong bounds for the constant factors for
the search costs for our algorithms, which in some
cases involve computer-assisted proofs. We also show
how to extend these strategies to find all POIs using
a simple, memoryless search algorithm, traveling a
distance that is O(log k)-competitive with the optimal
traveling salesperson (TSP) tour for k POIs.

1 Introduction

In the children’s game, “Marco Polo,” a group of
children are playing in a swimming pool. One player
is chosen as “it,” who closes their eyes and tries to
find and tag one of the other players. The “it” player
periodically calls out “Macro” and the other players
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who can hear this call must respond with “Polo.” The
“it” player moves based on this “Marco-Polo” call-and-
response protocol until getting close enough to another
player to tag them, which ends this player’s turn being
“it.” See, e.g., [20].

In this paper, we introduce and study the Marco
Polo problem, which is a combinatorial approach to
geometric localization motivated from the “Marco Polo”
children’s game. In this problem, we start with a search
point, ∆, at the origin, with one or more points of
interest (POIs) at a distance n from the origin and
our goal is to move ∆ to be within distance 1 of a
POI.1 We may periodically send probes out a specified
distance, d, and we learn whether or not there is a POI
within distance d from ∆. Optimization goals include
minimizing the number of probes and minimizing the
total distance traveled by ∆.

We can motivate the Marco Polo problem, for exam-
ple, from a search-and-rescue (SAR) scenario. Suppose
a hiker, who we’ll call “Alice,” is lost and stationary at
a point of interest (POI) in a large forest and we would
like to find her using an efficient SAR strategy. Assume
Alice has a wireless device, similar to an Apple AirTag,
which can respond to probes sent from a searcher, ∆.
In particular, suppose ∆ can send a probe at a given
power level, which sends an omni-directional signal out
to a known radius (depending on the power level), and
if Alice is present inside the circle determined by this
probe, then ∆ will receive a positive response. Such
probes use up power, however, both for ∆ and for Alice’s
tracking device; hence, the goal is to devise a sequence
of probes that minimizes the number of probes needed
to locate Alice to a specified accuracy. (See Figure 1.)

We also consider generalizations of this problem, such
as if there were multiple POIs. One can imagine other
applications besides search and rescue for the combi-
natorial searching problem, including locating animals
wearing tracking collars, finding radioactive sources,
or identifying anomalous readings in wireless sensor
networks.

Related Prior Work. Although we are not familiar
with any prior work on the Marco Polo problem itself,

1This formulation is made without loss of generality, as we
could just as easily normalize the search problem so that there is
a POI within distance 1 of ∆ and we are interested in moving ∆
to be within distance ε of a POI, for a given ε > 0.
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Figure 1: An example sequence of probes for an instance
of the Marco Polo problem. In this example, the first
four probes are negative and the POI (marked with an
✗) is found to within distance 1 on the fifth probe.

our work nevertheless falls into a rich area of study
known as localization algorithms; see, e.g., the survey
by Han, Xu, Duong, Jiang, and Hara [12]. We discuss
how our work compares to a wealth of existing prior
work in Section A.

Problem Definition. In the Marco Polo problem,
there are k ≥ 1 points of interest (POIs) with unknown
positions, with at least one that is within a distance,
n, of a point, O, called the origin, which is the initial
position of a mobile search point, ∆. A probe, p(x, y, d),
is a query that asks if there are any POIs within distance
d of the current location, (x, y), for ∆. The goal is to
design a search strategy to move ∆ to be within a
distance of 1 of a POI. Given this setup, there are a
number of possible constraints that define instances of
the Marco Polo problem, including:

• A search algorithm can be incremental, which
finds all k POIs one at a time, or coordinated,
which finds multiple POIs in a coordinated fashion.

• An algorithm is memoryless with respect to the
current search area if its state is restricted to the
area determined by the previous successful probe.

There are a number of metrics we can use to measure
the effectiveness of the strategy, including the following:

• P (n): the number of probes issued.

• Rmax: the maximum number of times a POI re-
sponds to a probe.

• D(n): the total distance traveled by ∆.

These efficiency measures can conflict, of course, in that
a strategy that minimizes, say, Rmax, may have poor
bounds for P (n) and/or D(n). Such a trade-off may
nevertheless be worthwhile, however, such as in an SAR
scenario where the batteries are running out in a hiker’s
device and responses are costly.

Our Results. In this paper, we provide a num-
ber of efficient algorithms for solving instances of the
Marco Polo problem. In Section D we show a simple
double-binary-search algorithm that uses 2⌈log n⌉ +
O(1) probes,2 but which is based on unrealistic assump-
tions. Instead, under more realistic assumptions about
conditions regarding the search space, we provide a
sequence of algorithms, starting with simple algorithms
based on hexagon geometries, which we call “hexago-
nal algorithms,” and progressing to more sophisticated
recursive strategies based on progressively shrinking
probes at each level of recursion. This ultimately re-
sults in an algorithm that makes at most 3.34⌈log n⌉
probes using a monotonically spiraling search strategy
at each recursive level. Using computer-assisted proof
techniques, we then show that it is possible to find a POI
using 2.53⌈log n⌉ probes. Although this strategy sacri-
fices the simplicity of a monotonically spiraling search, it
performs competitively with our proven lower bound of
2.4⌈log n⌉ probes for progressive shrinking algorithms.
We also provide various algorithms that reach different
trade-offs between the number of probes made and the
total distance traveled by ∆, include one algorithm that
travels a total distance of at most 6.02n, which is less
than the circumference of the original search area. We
then provide a family of algorithms that are able to
restrict the total number of POI responses, Rmax, to
any desired value from 1 to ⌈log n⌉ while minimizing the
number of probes made. Finally, we present a strategy to
extend our incremental algorithms to find all POIs while
traveling a distance that is O(log k)-competitive with an
optimal traveling salesperson (TSP) tour. We include
experiments supporting all our results in Section F.

2 Finding One POI

We describe a series of progressively more efficient
algorithms that minimize the number of probes needed
for finding a single POI. We assume that there may be
multiple POIs, either within the search region of radius
n or outside of it, but we are initially interested only in
finding one of them. Later we will discuss how to extend
these algorithms to find all POIs.

Hexagonal Algorithms. Our first algorithms,
which we call hexagonal algorithms, are defined in
terms of a tiling of our search area with hexagons of
radius n/2. There are seven such hexagons, which can
each be probed with radius-n/2 probes until a probe
succeeds, which then allows us to make a recursive call
to an n/2-sized subproblem. Such an algorithm will
take 7⌈log n⌉ probes in the worst case where POIs are
always in the last hexagon probed in each recursive
level. We can improve this to 6⌈log n⌉ probes by not
probing the last hexagon, since a POI must be there

2All of the logarithms used in this paper are base 2.
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if the other six probes fail. We refer to this hexagonal
algorithm as Algorithm 1.

There is a better hexagonal algorithm, however,
which involves first probing the upper two quadrants,
which can be done with radius n/

√
2 probes, eliminating

3 hexagons, and then probing 3 of the 4 remaining
hexagons as before. We refer to this modified hexagonal
algorithm as Algorithm 2. See Figure 2. If POIs are in
one of the two larger probes, we reduce the problem
less than before, only by a factor of

√
2, but with

fewer probes (at most 2). This turns out to be a better
tradeoff, so that in the worst case where POIs are all in
the last hexagon probed at each level and our algorithm
makes at most 5⌈log n⌉ probes.
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Algorithm 1
P (n) ≤ 6⌈log n⌉
D(n) ≤ 10.39n
Rmax ≤ ⌈log n⌉
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Algorithm 2
P (n) ≤ 5⌈log n⌉
D(n) ≤ 8.81n
Rmax ≤ 2⌈log n⌉

Figure 2: Two simple hexagonal algorithms. Algorithm
1 performs probes of radius n/2 along the center of each
of the 6 outer hexagons, while Algorithm 2 first performs
two radius n/

√
2 probes in the upper two quadrants

before performing the remaining probes of Algorithm 1.

Distance Traveled. To determine the total distance
traveled by ∆, D(n), in any probe-sequence algorithms,
including our hexagonal algorithms, let us consider the
first layer of probes, i.e., those performed when the
search radius is n. In particular, consider the k-th probe
(starting from 1) as having radius rk = ρkn, where
ρk represents the proportionality factor for the size of
each probe relative to the (current) search radius. Let
dk denote the distance ∆ travels to perform the k-
th probe. Assuming we always first succeed on our k-
th probe, the total distance traveled is determined by
D(n) = dk+D(ρkn), where we assume that D(n) = bkn,
for some constant bk. Solving this, we find that if indeed
the first probe that succeeds is always the k-th probe,
then bk = dk/(1− ρk). Using this, we determine that:

D(n) ≤ max
k

dk

1− ρk
n. (1)

To determine a good bound for this maximum, we use a
computer-assisted proof technique to compute this value

for each algorithm.3 The maximum number of responses
is achieved when the POI is always inside the largest
probe, ρmax, resulting in:

Rmax ≤ ⌈log1/ρmax n⌉ ≤ − 1
log ρmax

⌈log n⌉. (2)

Progressively Shrinking Probes. As shown in
Algorithm 2, we may be able to achieve better results
by probing from differently sized circles before ever
receiving a positive response. Indeed, we can do better
by using probes that get progressively smaller, so that if
we spend many probes to be able to recurse to a smaller
search area, we should at least reduce the remaining area
by a larger factor. The question remains how to choose
the sizes of the probes.

Let the total number of probes required to find a POI
starting with a search area of radius n be P (n), and
let the k-th probe (starting from 1) have radius rk =
ρkn, where ρk represents the proportionality factor for
the size of each probe relative to current search radius.
Assuming we always first succeed on our k-th probe,
P (n) is determined by the recurrence relation, P (n) =
k + P (ρkn), where P (n) = ck log n, for some constant,
ck > 0 , and our total number of probes will be k +
P (ρkn), resulting in

P (n) = k + P (ρkn) = k + ck log(ρkn)
= k + ck log ρk + ck log n

= k + ck log ρk + P (n).

Hence, 0 = k + ck log ρk =⇒ ck = − k
log ρk

.

In the worst case, all POIs will be in the k-th probe
such that the total number of probes is maximized, i.e.,
such that ck is maximized, so we pick ck such that it is
the same for all k. This is done by setting ρk = ρk

1 , where
ρ1 is the proportionality constant of the first probe,
resulting in the overall number of probes being4

P (n) ≤ − 1
log ρ1

log n. (3)

Note that our equations for the maximum number
of probes and responses, Equations (2) and (3), respec-
tively, are nearly identical—the latter occurring when
the POI is always in the first probe.

It is worth noting that all the above calculations make
no assumptions about the correctness of the algorithm,
i.e., the ability of the algorithm to always find a POI
when one exists. Any correct algorithm must be able
to cover the entire search area, including its perimeter,
a fact that we will use to derive a lower bound on the
number of probes required to find a POI.

Further, unlike the calculations for Equation (3)
which assumed that the final probe locating the POI

3We provide pseudocode for this algorithm in Section B.
4The inequality arises from the omission of the last probe.
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has radius which is exactly 1, it is possible for the final
probe to have a smaller radius, i.e., that the algorithm
obtained some excess precision. As we will discuss in
more detail in Section C, this excess precision results in
at most an additional constant number of probes, where
the constant is dependent on the maximum number of
probes the algorithm performs per layer, which we refer
to as kmax, obtaining:

Lemma 1 A correct progressively shrinking algorithm
may require at most − 1

log ρ1
log n + kmax − 1 probes to

find a POI in a search area of radius n.

The proof, as well as examples and more details are
provided in Section C. For simplicity, we will ignore this
additional constant in the main text.

A Lower Bound for Progressive Shrinking.
With this result in mind, we can determine a lower
bound on the number of probes required to find a POI.
Since it is always possible for all POIs to be along the
area’s perimeter, any correct algorithm must at least
probe the perimeter of the search area. To maximize
the perimeter coverage of each probe, we place it such
that its diameter is a chord of the circle, as shown
in Figure 3, and determine the minimum value of ρ1
required to probe the entire perimeter of the circle to
be approximately 0.74915. This results in a lower bound
of P (n) > 2.40001 log n probes.5

Figure 3: The optimal placement of progressively
decreasing probes of radius proportional to ρk

1 in order
to cover the circumference of the search area. ρ1 must be
at least 0.74915 to fully cover the perimeter, as shown.
There exists uncovered search area, depicted in blue.

Chord-Based Shrinking Algorithms. The place-
ment strategy for ∆ used to show the lower bound
of roughly 2.4 log n probes for progressive shrinking
algorithms is not a valid approach for an upper-bound
for an algorithm, due to all the internal uncovered
area, see Figure 3. Nevertheless, the approach of placing
diameters of each probe as chords of a circle can work

5The exact coefficient c can be determined numerically by
solving the following equation:

∑∞
k=1 sin−1 2− k

c = π, which we
approximated using Wolfram Mathematica.

with large enough probes, which we can determine
by tuning ρ1. We refer to our next algorithm, which
is a progressive shrinking algorithm, as Algorithm 3.
In this algorithm, we numerically determine, using a
computer-assisted proof,6 that the minimum value of
ρ1 that leaves no uncovered area is approximately 0.844,
reducing the number of probes to P (n) < 4.08 log n. See
Figure 4 (left). ∆’s route maintains the property that it
is monotonic in a counterclockwise orientation.

However, if we allow for nonmonotonic routes, we
can place the two largest probes side by side and
alternate the next two probes on either side, which
leads to significant improvements, which we refer to as
Algorithm 4. This algorithm is able to further reduce the
number of probes to P (n) < 3.54 log n, and is depicted
in Figure 4 (right).
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Algorithm 3
P (n) < 4.08 log n
D(n) ≤ 6.95n

1
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Algorithm 4
P (n) < 3.54 log n
D(n) ≤ 9.31n

Figure 4: Algorithms 3 and 4 both place probes such
that their diameters are chords of the search area circle.
Algorithm 3 places the probes in order of decreasing
size going counter-clockwise, while Algorithm 4 places
the probes such that they overlap as little as possible.

An optimization can be made to the total distance
traveled by ∆ for Algorithms 3 and 4. If a POI is
determined to be in the last area, because previous
probes in a recursive level are all negative, ∆ can travel
directly to the center of the first probe within the next
recursive layer instead of the center of the last probe,
since the last probe does not need to be performed.
Accordingly, Algorithms 3 and 4 tradeoff the number
of probes for flight distance. See Figure 4.

Higher-count Monotonic-path Algorithms.
Both Algorithms 3 and 4 use very few probes (i.e., 5) at
each recursive layer, while we know from Equation (3)
that we can introduce more probes with geometrically
decreasing radii without increasing P (n). However,
decreasing the value of ρ1 in Algorithm 4 will not
only introduce a gap in the perimeter but would also
introduce an internal gap, which would require another
placement scheme entirely to fill. Our next idea is to

6The code determining ρ1 and the maximum distance traveled
is available at https://github.com/ofekih/DroneSearching.

https://github.com/ofekih/DroneSearching
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begin with one large central probe before placing the
remaining probes along the perimeter monotonically as
in Algorithm 3, which should also have good flight-path
performance for ∆. Intuitively, the large central probe
greatly reduces the probe radius required to avoid
internal gaps, allowing for more probes to be placed.
Indeed, by placing the remaining probes such that
their diameters are chords of the search area, as was
done in Algorithm 3, leads to Algorithm 5, which
uses up to 8 probes at each recursive level. While this
algorithm improves upon Algorithm 3, requiring only
P (n) < 3.83 log n probes, and improved flight distance,
it performs worse than Algorithm 4 in its total number
of probes. See Figure 6. In order to take advantage
of even more probes, we observe that we cover the
circumference of the search area at a much faster rate
than the circumference of the central probe. In other
words, if we reduce the probe radii, we would still
be able to cover the search radius circumference, but
we would introduce internal gaps between the outer
probes and the central probe. Ideally, we would like
the rate at which they cover the inner and the outer
circumferences to be the same, such that the chords
made with the outer and inner circles cover the same
angle. The geometric reasoning is shown in Figure 5.

O

r1

A A′

B

B′

M

Pk

rk

θ

Figure 5: A diagram showing the relationship between
the k-th circle, centered at Pk, the first circle, centered
at O, and the search radius, also centered at O.

In particular, we must determine at what position,
Pk, to place the center Ck of the k-th probe with radius
rk. For simplicity, we assume that the search area is
a unit circle centered at the origin, O, and that the
first probe, C1, has radius r1 < 1. Let A, B, A′, and
B′ refer to the points where Ck intersects C1 and the
search area, respectively, and let M be the midpoint of
AA′. Covering both the inner and outer circumferences
at the same rate implies that ∠AOPk = ∠A′OPk,
i.e., that OA and OA′ are colinear. Since △AA′Pk

is isosceles, we know that PkM is perpendicular to
AA′ so |PkM | =

√
r2

k − ( 1−r1
2 )2 and consequently θ =

arctan(
√

r2
k

−( 1−r1
2 )2

1− 1−r1
2

). Thus, by moving the outer probes
inward, towards the origin, to their new centers as
described above, we are able to “turn it up to 11” and
achieve Algorithm 6. See Figure 6.

Darting Non-Monotonic Algorithms. Up to this
point, our best two algorithms for minimizing P (n) are
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Algorithm 5
P (n) < 3.83 log n
D(n) ≤ 6.72n
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Algorithm 6
P (n) < 3.34 log n
D(n) ≤ 6.02n

Figure 6: Algorithms 5 and 6 both perform probes
counter-clockwise along the circumference of a central
probe. Algorithm 5 places the probes so that diameters
are chords of the search area, while Algorithm 6 balances
the coverage rate of the inner and outer circumferences.
Out of all our algorithms, ∆ travels the least distance
(in the worst case) using Algorithm 6.

Algorithm 4, which is non-monotonic and uses its few
probes very efficiently, and Algorithm 6, which is mono-
tonic with a counterclockwise spiral of probes such that,
despite having significant overlap, it is able to squeeze
in nearly three times as many probes and achieve
better performance. The question remains whether it
is possible to achieve even better query performance at
the expense of monotonicity, giving up on optimizing
∆’s flight distance so as to achieve even better probe
complexity. We refer to such algorithms as being dart-
ing algorithms and discuss them in Section E. The
best two darting algorithms are highlighted in Figure 7.
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Algorithm 7
P (n) < 2.93 log n
D(n) ≤ 25.8n
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Algorithm 8
P (n) < 2.53 log n
D(n) ≤ 45.4n

Figure 7: Algorithms 7 and 8 both use computer-
assisted probe placement to efficiently cover the search
area. Algorithm 7 begins with Algorithm 4, removing
the final probe, while Algorithm 8 uses a differential
evolution algorithm to place the initial six probes. The
remaining probes are placed greedily as discussed in an
appendix. Algorithm 8 achieves our best probe results.
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Theorem 2 Progressive shrinking algorithms for ∆
searching a circular region of radius n have a lower
bound of 2.4 log n for P (n), and we can achieve upper
bounds as shown in Figures 2, 4, 6, and 7.

Reducing The POIs’ Responses. Our exploration
has so far focused on reducing the total number of
probes, P (n), required to find a POI. In this section,
we consider the case where POIs are limited in their
number of responses Rmax to probes, e.g., due to battery
constraints. Namely, consider a scenario where Rmax is
a fixed value where Rmax ≥ 1. Our goal is to design a
search strategy that minimizes the number of probes,
P (n), while ensuring that the number of responses
from the POIs does not exceed Rmax. Recalling from
Equation (2), the amount of responses is determined by
the size of the largest probe at each recursive layer, so
there is no benefit to using differently sized probes. We
present a family of hexagonal algorithms which probe
the search space using hexagonal lattices with L layers
of hexagonal rings. See Figure 8.

2
3

4 r

1

Figure 8: A hexagonal lattice with L = 4 layers of rings.

Increasing the number of rings increases the number
of hexagons per lattice, which in turn reduces each
hexagon’s size. These smaller hexagons require smaller
probes, reducing the number of responses from the POI
but increasing the (worst case) total number of probes.
Algorithm 1 can be thought of as one such algorithm
where L = 2. We describe our family of algorithms by
the following routine:

1. Cover the search area with an L-layer lattice.

2. Sequentially probe each hexagon in the lattice until
receiving a positive response.

3. Repeat until reaching an area with radius 1.

Theorem 3 If a POI is only allowed to respond at most
1 ≤ Rmax ≤ ⌈log n⌉ times, then a hexagonal algorithm
is able to find them using at most

P (n) ≤ 6Rmax

(
⌈ 2n

1
Rmax +2

3 ⌉
2

)
probes, (4)

by using a hexagonal lattice with

L = ⌈2n
1

Rmax + 2
3 ⌉ layers. (5)

Fact 4 A hexagon with side length s is covered by a
circumscribed circle with radius s.

Lemma 5 A circle with radius r can be covered by an
L-layer lattice of hexagons with side length s = 2r

3L−2 .

Proof. See Section C. □

Fact 6 An L-layer lattice has 1+6
(

L
2
)

hexagons, deter-
mined by the L-th centered hexagonal number.

Proof. (of Theorem 3) During step 1, we cover the
radius r search area with a lattice of hexagons of side
length s, where s = 2r

3L−2 from Lemma 5. From Fact 4,
we probe each of these hexagons with a circle of radius
s, reducing the search area of the next recursive layer
by a factor of 3L

2 −1. As the lattice grows, we reduce the
search area by a greater factor. In order to finally reach
a circle of radius 1, we require ⌈log 3L

2 −1(n)⌉ recursive
rounds, each requiring one response from the POI.
Solving for L, we obtain Equation (5). Finally, since
we can probe all the hexagons but one per round, we
probe at most 6

(
L
2
)

hexagons per round (see Fact 6),
and since there are Rmax rounds, the total number of
probes is bounded by P (n) ≤ 6Rmax

(
L
2
)
. □

Corollary 7 The total number of probes required to
find a POI is bounded as follows:

1. If Rmax = 1, then P (n) ≤ 4n2

3 + 6n + 6 = O(n2).

2. If Rmax = 2, then P (n) ≤ 8n
3 + 12

√
n + 12 = O(n).

3. If Rmax = ⌈log n⌉, then P (n) ≤ 6⌈log n⌉.7

3 Finding All POIs

Once one POI is found, we shut off the tracking device so
that it stops responding to ∆’s probes, yet the question
remains—how should ∆ search for the rest of the POIs?
Since ∆ is stateless with respect to its current search
area, no knowledge is gained about other POIs from the
search for the first POI. Even if ∆ was able to retain
its search path so far, the result of probes are binary;
any previous positive probe result cannot be relied on.
And even if the probe were able to determine the exact
quantity of POIs within the area, it is possible for them
to be in different search areas early on, resulting in the
probe needing to perform its search almost entirely from
scratch. This can trivially happen if the POIs are far
from each other, but may also happen if the POIs are

7This follows from the fact that n
1

⌈log n⌉ ≤ 2.
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close to each other but on opposite sides of a search
area boundary. Does there exist a coordinated search
strategy that performs better than the incremental
strategy of independently searching for each POI?

Let us assume we have a search algorithm A(n) that
is able to find a single POI in P (n) ≤ c⌈log n⌉ probes,
traveling a distance of D(n) ≤ dn. We use A as a
subroutine of the following strategy:

1. Find an arbitrary POI using A(n).

2. Shut off the tracking device of the found POI.

3. Without moving ∆, re-probe the area at radius 2,
4, 8, etc., until a probe returns a positive result
(i.e., another POI is found).

4. Invoke A using this new radius to find another POI.

5. Repeat steps 2 to 4 until all POIs are found.

Assuming there are k POIs, we have:

Theorem 8 The total number of probes (Ptot) and
the total distance traveled by ∆ (Dtot) during the
memoryless search algorithm for all k POIs is at most:

Ptot ≤ c⌈log n⌉+ (c + 1)(k − 1)⌈log e⌉,
Dtot ≤ dn + 2dE,

where E < OPT(⌈log k⌉+ 1), e = E
k−1 , and OPT is the

optimal tour length for the traveling salesperson problem
(TSP) on the k POIs.

Proof. See Section C. □
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A Additional Related Work

As mentioned in the introduction, the Marco Polo problem
falls into a rich area of study known as localization
algorithms; see, e.g., the survey by Han, Xu, Duong, Jiang,
and Hara [12]. Our approach differs from the approaches
used in this prior work, however, in that we are interested in
strictly combinatorial strategies, where all we learn is a single
in-or-out result from each probe, rather than, say, range
and/or directional results, such as in the work by Martinson
and Dellaert [16].

The Marco Polo problem is related to combinatorial group
testing, see, e.g., [7, 9, 10], which was originally directed at
identifying WWII soldiers with syphilis [6] and was recently
applied to COVID-19 testing [8]. In this problem, one is
given a set of n items, at most d of which are “defective.”
Subsets of the items (such as blood samples) can be pooled
and tested as a group, such that if one of the items in the pool
is defective, then the test for the pool will be positive. Tests
can be organized to efficiently identify the defective items
based on the outcomes of the tests. The Marco Polo problem
differs from combinatorial group testing, however, in that
the search space for the Marco Polo problem is a geometric
region and tests must be connected geometric shapes (i.e.,
radius-d balls using the Euclidean metric), whereas the
search space in combinatorial group testing is defined by
a discrete set of n items and tests can be arbitrary subsets
of these items.

There is also some work on SAR algorithms that use
call-and-response protocols, such as the CenWits system
by Huang, Amjad, and Mishra [14], which uses RF-based
sensors for the search and rescue of people, such as hikers,
who are carrying mobile wireless communication devices in
wilderness areas.

In the context of computational geometry, the Marco Polo
problem is somewhat related to the Freeze-Tag problem [1–
4,11,17], which involves “waking up” a collection for moving
robots that are initially at given points in the plane via

a strategy motivated from the children’s game, “Freeze
Tag” [21].

We stress that we are interested in solutions to the Marco
Polo problem that are adaptive, where the i-th probe can
depend on the results of the probes that came earlier. A
non-adaptive solution to the Marco Polo problem would be
related to a constructive solution to a classic disk covering
problem, which asks for the minimum number of disks of
radius ε > 0 that can cover a region in the plane [15].

B Supplemental Pseudocode

Pseudocode bounding the distance traveled by the search
point, ∆, is provided in Figure 9, and is implemented
in https://github.com/ofekih/DroneSearching/blob/
main/src/algorithm_utils.py.

Algorithm 1 Bounding the distance traveled by ∆
Require: A probe placement as a list of tuples (x, y, ρ)
Ensure: Upper bound on the total distance traveled

1: dk ← 0
2: pcurr ← (0, 0) ▷ Current position
3: bmax ← 0 ▷ Maximum bound
4: for each probe (x, y, ρk) in placement do
5: (cx, cy)← pcurr
6: dk ← dk +

√
(x− cx)2 + (y − cy)2

7: if probe is last in placement then
8: ▷ Skip round trip to final probe center
9: (nx, ny)← first probe in placement

10: d1 ←
√

n2
x + n2

y

11: dk ← dk − 2d1ρk ▷ Subtract round trip
12: bmax ← max(bmax, dk

1−ρk
)

13: pcurr ← (x, y)
14: return bmax

Figure 9: Algorithm for bounding the distance traveled
by ∆. When the POIs are determined to be in the last
probe area, ∆ can move directly to the first probe of the
next search area, saving distance. If the first probe is at
distance d1 from the origin of the original search area,
it is at distance d1ρk from the origin of the new search
area. The probe placement within the new search area
can be rotated such that the first probe is as close to ∆
as possible, saving an entire d1-length round trip to the
origin and back.8

C Omitted Proofs

In this appendix, we provide proofs that were omitted in the
body of this paper.

8This assumes there is not significant overlap between the last
two probes, which holds for all our algorithms.
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Lemma 9 (Same as Lemma 1) A correct progressively
shrinking algorithm may require at most − 1

log ρ1
log n +

kmax − 1 probes to find a POI in a search area of radius
n.

Proof. Consider for example the execution of our progres-
sively shrinking Algorithm 6—where the first probe has a
proportionality constant ρ1 = 0.812, and, when ignoring
constant additive factors as in Equation (3), finds a POI in at
most 3.34 log n probes. Algorithm 6 is able to fully cover the
search area with its progressively shrinking probes, making
it a correct progressively shrinking algorithm, and does so by
subdividing the search area into 12 progressively shrinking
probe regions, as shown in Figure 10.

1
23

4

5
6 7

8
9
10
11

✗

Algorithm 6
P (n) < 3.34 log n

ρ1 = 0.812
kmax = 12

Figure 10: The execution of Algorithm 6 where the POI
is at the last region probed by ∆ on some layer.

Let us assume that, on the final layer, the POI is in the
last search region, as shown in Figure 10, and let us consider
three cases:

1. n = 1. In this case, we have trivially found the POI
without requiring any probes. We also expected to
spend at most 3.34 log 1 = 0 probes.

2. n = 12.17. In this case, we first perform 11 probes, and
after they all return negative results, we determine that
the POI is in the last region. The size of the last region
is 12.17 × ρ12

1 = 1.00, successfully locating the POI. We
spent 11 probes to find the POI, while we expected to
spend at most 3.34 log 12.17 = 12.04 probes.

3. n = 1.01. Similar to the last case, we first perform 11
probes, however this time, the last region is of size
1.01 × ρ12

1 = 0.08. Not only did we locate the POI
within distance 1 of it, we located it to within a much
greater precision. Just like the previous case, we spent
11 probes to find the POI, while this time we expected
to spend at most only 3.34 log 1.01 = 0.05 probes.

All three cases are able to successfully locate the POI,
as expected from any correct algorithm. Moreover, the first
two cases are able to locate the POI using at most the
maximum number of probes expected by P (n). Only the

third case, which locates the POI to excess precision, requires
more probes, specifically 11 more probes, than expected.
Our result follows from the fact that this inefficiency can
only occur on the last layer of the algorithm, and that the
maximum number of probes we perform on each layer is
kmax − 1. □

If this added constant is of concern, it can be reduced
by increasing the size of all probes to be at least 1. Such
optimizations are outside the scope of this paper, however.

It is worth pointing out that Algorithms 1 and 2, which are
not progressively shrinking, are able to express this added
constant by using ⌈log n⌉ instead of log n in the bound for
P (n). This is because their value of kmax −1 exactly matches
their log n coefficients of 6 and 5, respectively.

Lemma 10 (Same as Lemma 5) A circle with radius r
can be covered by an L-layer lattice of hexagons with side
length s = 2r

3L−2 .

Proof. Let us consider the case of a hexagonal lattice with
an even number of layers, as in Figure 8. The closest point
from the center of the lattice to its boundary is obtained
by moving diagonally along the center hexagons maximal
diameter. Consider the distance, r, to that point. Every
even-numbered layer of hexagons contributes one side length
s, while every odd numbered layer contributes its maximal
diameter 2s, except for the first layer which contributes s.
Thus, the total circumradius r = 3L

2 s − s = ( 3L
2 − 1)s.9 □

Theorem 11 (Same as Theorem 8) The total number
of probes (Ptot) and the total distance traveled by ∆ (Dtot)
during the memoryless search algorithm for all k POIs is at
most:

Ptot ≤ c⌈log n⌉ + (c + 1)(k − 1)⌈log e⌉,

Dtot ≤ dn + 2dE,

where E < OPT(⌈log k⌉ + 1), e = E
k−1 , and OPT is the

optimal tour length for the traveling salesperson problem
(TSP) on the k POIs.

Proof. We re-iterate the steps of our stateless below:
1. Find an arbitrary POI using A(n).
2. Shut off the tracking device of the found POI.
3. Without moving ∆, re-probe the area at radius 2, 4, 8,

etc., until a probe returns a positive result (i.e., another
POI is found).

4. Invoke A using this new radius to find another POI.
5. Repeat steps 2 to 4 until all POIs are found.
Other than step 1, the performance of the search strategy

depends by the relative positions of the POIs. Let the first
POI found be POI 0, and the second POI found in step 4 be
POI 1. Let the distance between the two POIs be denoted as
e1, and the distance between POI i−1 and POI i be denoted
as ei, for i ∈ {1, 2, . . . , k}. The total number of probes in
step 3 required to find a large enough search area containing

9This bound is tight for lattices with an even number of layers,
and only improves for lattices with an odd number of layers.
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POI i is ⌈log ei⌉, where the size of the search area is 2⌈log ei⌉.
Finding the POI within this search area (step 4) will take
P (2⌈log ei⌉) = c⌈log 2⌈log ei⌉⌉ = c⌈log ei⌉ probes. Adding on
the initial probe to find POI 0, the total number of probes
required to find all POIs is at most:

Ptot ≤ c⌈log n⌉ +
k−1∑
i=1

(c + 1)⌈log ei⌉.

Let E =
∑k−1

i=1 ei, and e = E
k−1 . At each step of the

algorithm, we find a POI that is within a factor of two of
the closest still-undiscovered POI to the last found POI. This
algorithm will therefore perform at worst a factor of two
approximation of the nearest neighbor tour for the traveling
salesperson problem (TSP), e.g., see [5, 13]. In Euclidean
space, the (greedy) nearest neighbor tour of n salespeople
performs at worst a factor of 1

2 (⌈log n⌉ + 1) of the optimal
TSP tour length (OPT), see [18]. Applying to our case, E <
OPT(⌈log k⌉+1). Since log e is a concave function, it follows
from Jensen’s inequality that

∑k−1
i=1 ⌈log ei⌉ ≤ (k − 1)⌈log e⌉,

where e is the average value of e, and we obtain our desired
result.

Regarding the total distance traveled, note that ∆ only
moves during steps 1 and 4. For the first POI, ∆ travels
D(n) ≤ dn. Using similar reasoning as above, for the i-
th POI, ∆ travels D(2⌈log ei⌉) ≤ d(2ei). Overall, the total
distance traveled is at most: dn + 2d

∑k−1
i=1 ei = dn + 2dE,

and our result follows. □

D Algorithm Assumptions

In this section we justify some assumptions regarding the
possible probes and locations of the POIs that we make in
the main body of the paper. Namely, we assume that:

• The maximum allowed probe distance, d, is n.
• There may be multiple POIs, either within the initial

search region or slightly outside of it.

More specifically, we show how, by relaxing these assump-
tions, a relatively simple solution is able to solve the problem
using an optimal number of probes.

Simple Case: Exactly One POI at Full Distance.
Let us begin with a simple (but admittedly unrealistic)

scenario, where there is exactly one POI within distance n
of the origin and we can perform arbitrarily large probes.
In this case, where we allow unbounded probe distances,
we can find the sole POI using two binary searches, one
in each dimension. We place ∆ at a very large distance
from the origin, such that the intersection for the probe
with the original search region is nearly a straight line, and
perform one binary search using ⌈log n⌉ + 1 probes to find
a region of width at most 1 in the first dimension. We then
perform a similar binary search placing ∆ in an orthogonal
direction to find the POI in the second dimension. We are
left with a region of side length 1, which is fully contained
within a single, final, radius-1 probe. This solution thus uses
2⌈log n⌉ + O(1) probes, but it relies on ∆ traveling very
far away and at high altitude and the tracking device to
have very strong signal strength, which are not reasonable

✗

Figure 11: A search for one POI (✗), first reducing
the horizontal dimension to a width of 1 (in the dashed
orange probes), then searching along the remaining arc
(with the solid blue and orange probes).

assumptions. This can be improved somewhat by restricting
the probe distance to n, as we explore in the next section.

A Slight Improvement to a Bad Algorithm. While
the previous algorithm allows for unbounded probe dis-
tances, we now show how to achieve a similar result while
restricting the probe size to be at most n. In this case,
we reduce the horizontal dimension this time first to a 1-
width arc, and then cut the length of the arc in half for
each subsequent probe. Note that the arc may be up to
πn units long, which is greater than the 2n original region
diameter, resulting in up to one more probe. This probe
can be removed by reducing the remaining area by two per
probe in the first dimension rather than the arc width. See
Figure 11.

Note that this algorithm may require ∆ to travel outside
of our original search region. This can be avoided with a final
algorithm. We can place ∆ at the center of the original search
region and perform a binary search by changing the radius of
the probes, resulting in at most a width-1 shell of the original
search region, requiring at most ⌈log n⌉ probes.10 This shell
of outer-radius r is 2πr units long, where r can be up to
n. We can reduce this shell using a similar binary search,
by moving ∆ along the outer edge of the shell, performing
probes with radius r. See Figure 12 for an example of this
algorithm. Note that the first of these probes will only reduce
one third of the shell, rather than a factor of 2, resulting in
up to one more probe overall. We can then perform probes
to reduce this shell to a width-1 square, which could be
performed in ⌈log n⌉ + 2 probes.

E Darting Non-Monotonic Algorithms

In this section we discuss the darting algorithms, which
are non-monotonic and place many more probes at each
recursive level by first placing several carefully-placed probes
and then greedily adding more to fill in smaller and smaller
gaps, albeit at the expense of darting from side to side in the
search space to do so. That is, the approach for our darting
algorithms is as follows: after an initial placement of several
probes, we determine if there are any uncovered internal
areas. If so, we find the largest such area and place a probe

10Note that reducing the remaining area by a factor of two at
this stage would reduce a constant number of probes.
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Figure 12: A depiction of the final “simple” search
strategy where it is known that there is only one POI
within the search region. In this final strategy, not
only is the probe distance limited to n, but ∆ is also
restricted to the original search region.

such that it intersects two points on the area’s convex hull. If
there are multiple possible placements, we repeatedly choose
the one that reduces the remaining area the most in a greedy
fashion. See Figure 13. Subsequent probes are placed in the
same manner, until either the entire search area is covered,
or the probes become sufficiently small as to be unable to
cover the remaining area.

Figure 13: A method to greedily add an arbitrary
amount of probes to any initial placement of probes. On
the left, Algorithm 4 given an insufficient ρ1 value fails
to cover the search area, leaving some uncovered internal
area (in blue). On the right, the largest uncovered
internal area’s convex hull (in green) is identified, and
a probe is placed such that it intersects two points on
the hull.

We note that the final probe of Algorithm 4 is often
the least efficient; see Figure 13 (left) and Figure 4. If we
run Algorithm 4, remove the final probe, and then apply
the greedy method described above to place the remaining
probes, we obtain Algorithm 7, which is able to significantly
reduce the number of probes required to find a POI to
P (n) < 2.93 log n.

Exploiting this approach further, however, strains our
ability to reason about regions that are uncovered af-
ter performing many probes; hence, for an even further
improved algorithm, Algorithm 8, its probe sequence for
each recursive level is determined using computer-assisted

proof. More specifically, the placement of the first six
probes is determined by a differential evolution algorithm,
which is a type of genetic algorithm that optimizes a
function by iteratively improving a population of candidate
solutions, see [19]. Next, we fill in the gaps according to the
aforementioned greedy method. The resulting Algorithm 8
is able to achieve our best probe results, with P (n) <
2.53 log n, albeit with a very large value for D(n). See
Figure 7.

F Experiments

We implemented our 8 algorithms and tested them. The data
were obtained by placing a POI at a random location, deter-
mined from a uniformly random angle and a random distance
from the center of the search area. When the POI was in the
last probe’s search area, the last probe was not executed, and
∆ proceeded directly to the first probe of the next search
area. Each algorithm was executed 40 million times, where
n = 220, and normalized by dividing by either ⌈log n⌉ or by
n. Our code is publicly available at https://github.com/
ofekih/DroneSearching. Both Algorithms 1 and 2, despite
having a poor worst-case probe complexity, perform well in
practice, finding the POI using fewer probes on average than
Algorithms 3–6. Our computer-assisted algorithms (7 and 8),
however, outperform them. Interestingly, the progressively
shrinking algorithms all have a non-zero variability in their
probe counts. See Figure 14. While Algorithms 1 and 2
perform well in terms of average distance traveled, they are
outperformed by Algorithms 5 and 6, which each have the
best distance-traveled guarantees. See Figure 15. Overall,
the best methods are Algorithm 8 if number of probes is a
priority, Algorithm 6 if distance traveled is a priority, and
Algorithm 2 for a good balance.

Figure 14: Simulation results for P/⌈log n⌉. Error bars
represent one standard deviation from the mean.

Number of Probes Made. We make two interesting
observations regarding the number of probes made, P , for
our progressive probe algorithms.

Observation 1 The progressive probe algorithms, Algo-
rithms 3–8, exhibit a non-zero variance in P experimentally.

And perhaps more surprisingly, in Table 1 we observe:

Observation 2 Progressive probe algorithms appear to per-
form more probes than their theoretical upper bounds.

https://github.com/ofekih/DroneSearching
https://github.com/ofekih/DroneSearching


37th Canadian Conference on Computational Geometry, 2025 260

Probes (P/ log n) Total Distance (D/n) Responses (R/ log n)
Category Alg. # Min Avg Max Bound Min Avg Max Bound Avg Max Bound

Hexagonal Alg. 1 1.00 3.24 5.70 6.00 0.00 3.35 10.39 10.39 0.89 1.00 1.00
Alg. 2 1.00 2.93 4.80 5.00 0.00 2.65 8.81 8.81 1.11 1.45 2.00

Chord-Based Alg. 3 3.85 4.13 4.25 4.08 4.69 5.46 6.56 6.95 1.99 2.40 4.08
Alg. 4 3.10 3.52 3.70 3.54 4.30 5.38 9.00 9.31 1.94 2.50 3.54

Monotonic Alg. 5 3.55 3.87 4.15 3.83 0.00 1.92 6.72 6.72 2.49 3.85 3.83
Alg. 6 3.25 3.41 3.85 3.34 0.00 1.96 6.01 6.02 1.96 3.35 3.34

Darting Alg. 7 2.90 2.99 3.65 2.93 3.86 5.97 25.74 25.80 1.39 2.15 2.93
Alg. 8 2.55 2.59 3.20 2.53 2.44 4.05 42.58 45.40 1.31 1.85 2.53

Table 1: A numerical comparison of simulation results for our 8 algorithms on three normalized performance metrics,
namely the number of probes made (P ), the total distance traveled by ∆ (D), and the number of POI responses
(R). The best values are highlighted in bold. The category names used are crude abbreviations; see the main paper
for their proper names.

Figure 15: Simulation results for D/n, where n = 220.

Both observations are primarily explained by the last
recursive layer in each of our algorithms. In the proof of
Lemma 1 in Section C, we show how the number of probes
required in the last layer depends significantly on the size of
the last layer as well as the placement of the POI within it.
Specifically, it can vary by up to the maximum number of
probes performed per layer of the algorithm, kmax − 1, and
thus the true maximum number of probes performed can be
up to kmax − 1 more than our simplified bounds as shown
in Table 1 (see Lemma 1). To obtain more precise upper
bounds for any specific n, we can expect our normalized
number of probes made, P (n)/ log n, to be increased by up
to kmax−1

log n
. As expected, these adjusted bounds now hold

for all algorithms. See Table 2. As n increases, the log n
coefficient in P (n) dominates this constant number of extra
probes, so our theoretical upper bounds will hold.

Total Distance Traveled by the Search Point.
As expected, both our higher-count monotonic-path (HM)
algorithms, Algorithms 5 and 6, minimize the total distance
traveled by ∆. Algorithms 1–3 also have monotonic counter-
clockwise paths, but their less efficient probe sequences
result in worse average distance traveled. See Table 1. The
hexagonal and HM algorithms each start with a central
probe,11 and consequently have a minimum of 0 distance

11Recall that the hexagonal algorithms can be modified to start
with the first probe instead of ending with it.

Probes (P/ log n)
Category Alg. # Max True Bound

Hexagonal Alg. 1 5.70 6.00
Alg. 2 4.80 5.00

Chord-Based Alg. 3 4.25 4.28
Alg. 4 3.70 3.9

Monotonic Alg. 5 4.15 4.18
Alg. 6 3.85 3.89

Darting Alg. 7 3.65 4.18
Alg. 8 3.20 4.13

Table 2: A table comparing the maximum number of
probes observed in our experiments with the true upper
bounds for each algorithm when n = 220.

traveled. While all algorithms experienced an instance where
∆ traveled nearly as much as their worst-case bound,
reassuringly, most algorithms performed significantly better
on average, with the hexagonal and HM algorithms perform-
ing ~3 times better, and the darting non-monotonic-path
algorithms, Algorithms 7 and 8, performing ~4 and ~11 times
better, respectively. They are still likely not best suited for
time-critical rescue operations since they travel 2-3 times
more than the HM algorithms on average.

Number of POI Responses. Finally, we compare the
number of POI responses, R, for our algorithms, to see which
are best suited for the case where the POI has battery
constraints. We find that, Algorithm 1 performs by far
the best, with not only the fewest responses across the
board, with its maximum number of responses being lower
than the average of any other algorithm, but also with the
smallest standard deviation. See Figure 16. This result is
not surprising, because in Corollary 7 (3), we learn that
Algorithm 1 is part of a larger family of response-efficient
algorithms. The next best algorithm is Algorithm 2, also
partly based on a hexagonal grid, and then the darting
algorithms, Algorithms 7 and 8, which perform only a small
number of probes in general.
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Figure 16: Simulation results for R/ log n
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