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The Rectilinear Marco Polo Problem*
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Abstract where distance is more accurately abstracted as being

We study the rectilinear Marco Polo problem,
which generalizes the Euclidean version of the Marco
Polo problem for performing geometric localization to
rectilinear search environments, such as in geometries
motivated from urban settings, and to higher dimen-
sions. In the rectilinear Marco Polo problem, there is
at least one point of interest (POI) within distance
n, in either the L; or L., metric, from the origin.
Motivated from a search-and-rescue application, our
goal is to move a search point, A, from the origin to
a location within distance 1 of a POI. We periodically
issue probes from A out a given distance (in either the
Ly or Ly metric) and if a POI is within the specified
distance of A, then we learn this (but no other location
information). Optimization goals are to minimize the
number of probes and the distance traveled by A.
We describe a number of efficient search strategies for
rectilinear Marco Polo problems and we analyze each
one in terms of the size, n, of the search domain, as
defined by the maximum distance to a POI.

1 Introduction

Gila, Goodrich, Hadizadeh, Hirschberg, and Taheri-
jam [13] introduce the Marco Polo problem, which they
motivate in terms of one or more points of interest
(POIs), thought of as hikers lost in a forest, that we
would like to localize using a mobile search point, A.
Each lost hiker is assumed to have a wireless device
that can respond to probes sent from A to a specified
distance such that if a lost hiker is within that distance
of A, then the search algorithm will receive a positive
response. Such probes use up power, of course, both for
A and for a POI’s tracking device; hence, the goal is
to devise a search algorithm for A and a sequence of
probes that minimizes the number of probes needed to
locate a POI to within a distance of 1.

In the formulation of Gila et al. [13], the underlying
geometry for the Marco Polo problem is Euclidean, such
that A can move unrestrictedly in any direction and
probes are circles, which seems reasonable for searching
in a forest but not for searching in an urban environment
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rectilinear. In this paper, we are interested in studying
a rectilinear version of the Marco Polo problem.

As a colorful motivation of the two-dimensional ver-
sion of the rectilinear Marco Polo problem, suppose one
or more people have been kidnapped and are being held
in one or more secret points of interest (POIs) in a city
(like New York, Chicago, or Toronto) whose streets are
essentially grids. A mobile search point, A, can move to
search for them that is restricted to flying or driving
along rectilinear paths (since it cannot fly or drive
through buildings). Each kidnap victim at a POI has
a hidden electronic device that can respond to probes
from A, which can issue probes to specified rectilinear
distances such that if there is a kidnap victim within
this distance, then our search algorithm will learn this.
But the search algorithm does not learn the direction
or distance to the kidnap victim. The optimization
problem is to minimize the number of probes and/or
victim responses, as well as possibly minimizing the
travel distance for A. We are therefore interested in
efficient searching strategies for rectilinear Marco Polo
problems with analyses in terms of the size, n, of the
search domain.

We can therefore formulate the rectilinear Marco
Polo problem as a computational geometry problem,
where we have at least one point of interest (POI)
at distance at most n from the origin, and we want to
move a search point, A, to within distance 1 of a POI,
guided by probes. A probe is a query specified by A’s
position and a distance, d, such that we learn whether or
not a POI is within distance d from A, in either the L
or Lo, metric. Our optimization goals are to minimize
the number of probes and distance for A to travel to
find a POL.

Related Prior Work. We are not familiar with any
prior work on the rectilinear Marco Polo problem.
As mentioned above, Gila, Goodrich, Hadizadeh,
Hirschberg, and Taherijam [13] introduce the Euclidean
version of the Marco Polo problem, where search
paths are not restricted and travel distances and probe
distances are measured with the Euclidean Lo metric.
For example, they provide a number of carefully
choreographed travel patterns and probe strategies,
including one that finds a POI with 3.34[logn] probes
and flight distance 6.02n and a strategy that uses
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2.53[log n] probes and flight distance 45.4n.

The Marco Polo problem is related to combinatorial
group testing, see, e.g., [8-11,14]. In this problem, one is
given a set of n items, at most d of which are “defective.”
Subsets of the items can be pooled and tested as a group,
such that if one of the items in the pool is defective,
then the test for the pool will be positive. Tests can
be organized either adaptively or non-adaptively to
efficiently identify the defective items based on the
outcomes of the tests. The Marco Polo problem differs
from combinatorial group testing, however, in that the
search space for the Marco Polo problem is a geometric
region and tests must be connected geometric shapes
(like squares), whereas the search space in combinatorial
group testing is for a discrete set of n items and tests
can be arbitrary subsets.

Another related problem in computational geometry
is the freeze tag problem [2, 3,7, 15], which has also
been studied in the rectilinear setting [6,19], where one
is interested in moving robot points in the plane to
“wake up” a collection of robots. Also, another related
rectilinear combinatorial optimization problem is the
optimization problem abstracted from the Minesweeper
game; see, e.g., [17]. There is also considerable prior
work on search-and-rescue algorithms focused on non-
combinatorial solutions, including the use of continuous
monitoring, sophisticated cameras, and non-adaptive
travel patterns; see, e.g., [1,4,5,16,18,20-22].

Problem definition. 1In the rectilinear Marco Polo
problem, there are k > 1 entities, which we’ll call points
of interest (POIls), with unknown positions, at least
one of which are within a distance, n, in the L; or L.,
distance metric, of a point, O, called the origin. That
is, the search region is a diamond or square in R? or a
octahedron or cube in R3.

A probe, p(x,y,d), is a query that asks if there is any
POI within distance d of the current position, (x,y), of
a search point, A, measured under a distance metric,
since such a point is the position at which, e.g., a search
algorithm would issue a probe request to a wireless
device of a lost kidnap victim. The goal is to design
a search strategy for A to localize one or more POIs
to within a distance of 1. In this paper, we primarily
consider the case where A only searches for a single POI,
which can be combined with an incremental search
strategy which finds POIs one at a time, for example,
using the generalized algorithm of [13]. We also make
no assumptions about the number of POlIs, k, and their
locations, besides the fact that at least one POI is within
distance n from the origin, referred to the unbounded
version of the problem. Finally and most importantly,
unlike the paper by Gila et al. [13], which focuses solely
on the Lo distance metric, we consider the rectilinear
metrics, L1 and Lg.

For any search strategy, there are a number of ways we
can measure the effectiveness of the strategy, including:

e P(n): the number of probes issued by A.

o Roax: the maximum number of times a POI must
respond to a probe.

e D(n): the total distance traveled by A, in a chosen
rectilinear metric, such as L1 or Lse.

Our Results. In this paper, we provide a number of
efficient algorithms for the solving Marco Polo problems,
with algorithms that achieve optimal or near-optimal
performance across all measures. We begin with a warm-
up algorithm which sequentially checks each quadrant
of the search area in the 2D case, and each octant
in the 3D case. While this simple algorithm indeed
has a poor worst-case probe performance, we show
that it effectively minimizes the number of responses
required by each POI to just [logn], regardless of
the number of dimensions. We then present a pair
of more sophisticated algorithms that use a domino-
like recursive search pattern to achieve great probe
complexities, to just 2[logn] +1 in 2D and 3[logn] +3
in 3D, near-optimal with respect to the lower bounds of
2[logn] and 3[logn], for 2D and 3D, respectively.

We then focus on minimizing the distance traveled
by A with respect to the distance to the nearest
POI, 6min, presenting an algorithm which performs a
binary search for each dimension, which we call central
binary search (CBS). A search point, A, following this
algorithm will travel a distance of at most 20, + O(1)
in 2D, 30min + O(1) in 3D, while still maintaining a
near-optimal probe complexity. Afterwards, we show
how to extend our algorithms to higher dimensions,
achieving the orthant algorithm that yields good POI
response performance for all dimensions, and achieving
the generalized CBS algorithm, which provides near-
optimal probe complexity and instance-optimal distance
performance. Finally, we present a method to make
the probe and response performance of any algorithm
instance-optimal with respect to dnin. In Section B, we
include experiments that support our results.

For simplicity, we primarily focus on instances of the
rectilinear Marco Polo problem in the L., metric in
this paper, representing the search area as a square
or cube rather than as a diamond or octahedron in
our figures. Likewise, we refer to the search area as
a hypercube in general case rather than as a cross-
polytope. Nevertheless, our results apply equally well
to the L; metric except where explicitly specified.

2 Rectilinear Searching Strategies

We first introduce a number of algorithms for the
2D and 3D rectilinear searching problem, including
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more natural algorithms and some more involved ones,
and show how each are optimal with respect to a
different metric. In general, we assume that there may
be multiple POlIs, yet we are only interested in finding
one of them, and that A starts its search from the origin.
We do note, however, that each of our algorithms can be
used as a subroutine in the general method of finding
all targets as described in [13]. We generalize several
algorithms to higher dimensions in a later section.
Quadrant and Octant Algorithms. Perhaps the
first algorithms that come to mind are those that divide
the original search area into quadrants and octants. We
probe each quadrant from its center, with a probe of half
the radius of the parent region. Since a POI is known
to exist within the search area, at most three quadrants
need to be probed. And each subsequent layer has half
the radius of the previous. As such, there are at most
[logn] layers total, and since each layer may take up
to three probes, the total number of probes, P(n), is
at most 3[logn] probes. In the 3D case, there are eight
octants in total, where at most seven must be probed,
resulting in P(n) < 7[logn] probes. See Figure 1.

1 2
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Figure 1: A simple quadrant search algorithm, showing
the first 5 probes. Only three of the four quadrants must
be probed, as the POIs (denoted by X) must be in the
final quadrant if the first three probes fail. Regions with
diagonal lines correspond to failed probes, while probe
5 is a successful probe. The search will continue in the
5th region. For simplicity, figures represent L., probes,
but our algorithms and figures translate directly to L,
probes when considered diagonally.

While our subsequent algorithms will reduce the total
number of probes, this algorithm behaves best with
regards to the maximum number of times a POI must
respond to a probe, Ry,.x. Specifically, since a POI only
responds at most once per layer for both 2D and 3D,
we have that Rpax < [logn] responses. We note the
similarity between this algorithm and the hexagonal

algorithms of [13].

Domino Algorithms. Our quadrant algorithm was
able to find a POI using at most 3[logn] probes, and
the question remains—can we do better? For the 2D
case, since we start with an area of (2n)? and end with
an area of no larger than (2)?, and each probe, in the
worst case, at most halves the remaining area, there is a
trivial lower bound of 2[log n] probes. Similar reasoning
can be used to lower bound the worst case number of
probes in the 3D case to at least 3[log n] probes. In this
section, we introduce our first two algorithms, which are
able to achieve within constant factors of these lower
bounds; due to their structure, we refer to these as the
2D and 3D domino algorithms, respectively.

The 2D Domino Algorithm. In the 2D domino
algorithm, we refer to a position as a 2-domino if it
consists of two equally sized areas—a d x d area where
a POI is known to exist, and an adjacent d x d area
known to be empty, i.e., where no POI exists. Let the
empty region be to the left of the remaining search area
as depicted in Figure 2, without loss of generality. Our
first probe has radius d/2, and is placed halfway between
the two areas. If the probe fails, we know that the POI
must be in the remaining right half of the search area. If
the probe succeeds, however, we take advantage of the
fact that we know that the left half of the probe is empty,
and similarly reduce the search area. Regardless of the
result, we perform a second probe with radius d/4 in one
half of the remaining search area, and achieve a new 2-
domino with a quarter of the area. This is optimal, since
the remaining area is halved with each probe. Figure 2
depicts this procedure.
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Figure 2: The recursive 2-domino procedure as used

in the 2D domino algorithm. Each probe reduces the
remaining area by a factor of 2. Regardless of the results
of these two probes, we are left with a new 2-domino
where each dimension is halved, depicted in yellow.

The question that remains, however, is how to achieve
the initial 2-domino. To this end, our 2D domino
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algorithm performs the top layer using the simple
quadrant algorithm depicted in Figure 1. In the best
case, if the first probe succeeds, we have reduced the
area by a factor of 4 and simply continue our algorithm
recursively into this quadrant. Otherwise, if the first
probe fails, any subsequent probe that succeeds is
adjacent to a quadrant that is known to be empty, and
we can initiate our 2-domino procedure. In the worst
case, it will take all 3 initial probes to reach a domino
with a quarter of the remaining search area, resulting
in P(n) < 2[logn] + 1 probes.

The 3D Domino Algorithm. Unlike for our quad-
rant algorithm, it is not as straightforward to extend our
2D domino algorithm to a 3D algorithm, and we only
do so under the Lo, metric. Our first step is to define a
4-domino as a 3D region consisting of four equally sized
dxdxd cubes, where a POI is known to exist in one, and
all the rest are known to be empty. As before, the first
probe has radius d/2, and is placed halfway between the
search area and one of the two adjacent empty regions.
The second probe also has the same radius, and is placed
orthogonally depending on the result of the first probe
as to halve the remaining volume again. Finally, we
perform the final probe of radius d/4 in a half of the
remaining search area, resulting in a new 4-domino with
an eighth of the original volume. See Figure 3.

Figure 3: The recursive 4-domino procedure as used
in the 3D domino algorithm. Each probe reduces the
remaining volume by a factor of 2. Regardless of the
results of these three probes, depicted in blue, orange,
and green, respectively, we are left with a new 4-domino
where each dimension is halved, depicted in yellow.

We have shown that once we reach a 4-domino
shape, we are able to perform optimally, reducing the
remaining volume by a factor of 2 with every probe.
Unfortunately, there is no simple procedure by which
we efficiently reach a 4-domino shape from the original
search area. In Section A, we show how by using an
additional construction, similar to the 2D 2-domino

procedure, as an intermediate step, we are able to
prove good results. The resulting 3D domino algorithm
requires at most 3[logn] + 4 probes in the worst case.

The Central Binary Search Algorithm. Our
domino algorithms were able to achieve excellent probe
complexities of 2[logn]+O(1) in 2D and 3[logn]+O(1)
in 3D. These algorithms, however, make no attempt
to minimize the distance traveled by the search point,
A, which may be important in practice in a real-world
scenario. In this section we discuss a 2D algorithm that
not only minimizes the number of probes, P(n), but
also minimizes the distance traveled by A, D(n). More
specifically, we will show how our algorithm is instance-
optimal with respect to distance, which we define as
having A travel a distance of at most D(n) € O(0min),
where 0, is the distance of the closest POI to the
origin using either the L or L., metrics. This algorithm
performs two binary searches from the center of each
dimension, so we refer to it as the 2D central binary
search algorithm.

Our algorithm can be thought of in two distinct
‘phases’, one for a binary search in 2D, and another for
a binary search in a ‘1D’ edge, as depicted in Figures 4
and 5, respectively. In a later section, we will show
how this algorithm can be generalized not only to three
dimensions, but also beyond.

For the first phase, we perform a sequence of probes
from the origin, without moving A, performing a binary
search to find a width-1 shell containing the nearest
POI, as described in Algorithm 1. This binary search
takes at most [logn] probes. Afterwards, we determine
which one of the four edges of the shell contains a POI,
which can be performed with two additional probes, as
depicted in Figure 4. While the probe does not need to
move by much to perform these two probes, it may need
to move 1 or 2 units along the z and y axes, such as to
only probe a desired subset of the shell’s edges. We go
into more detail about this in a later section.

Algorithm 1 Binary Search for the Initial Shell Radius

1: Output: approximate distance é to nearest POI,
such that 6 — 1 < Gppin < 0.
l+0,h+n
while h — [ > 1 do
m |2
if p(0,0,m) succeeds then
\ h <+ m
else
L lem
return h

> lower and upper bounds

> POI is in the shell

> POI is outside the shell

After this, we have reduced the problem to a 1D
search along an edge of the original shell. A similar
binary search is performed to find the two width-1
squares nearest to the center of the edge which are
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Figure 4: The 2D central binary search algorithm. The
probe is always centered at the origin, depicted by a
purple point, but varies in size, increasing after every
failed probe, and decreasing after every successful probe.
It continues performing this binary search until reaching
the closest width-1 shell to the origin where a POI is
known to exist. After this, only two additional probes
are needed to determine which of the four edges of the
shell contains a POI.

known to contain a POI. While this binary search also
takes at most [logn| probes, it may require A to move
back and forth along the line from the origin and the
center of the edge. See Figure 5. The first probe is
performed at the center of this line, and requires the
probe to move ¢ /2 units from the origin under both the
L1 and L, metrics. The second probe will be performed
) /4 units away, either back towards the origin in the
case of a failed probe, or towards the edge in the case
of a successful probe. In fact, each subsequent probe
will require moving A half the distance as the previous,
and so the total distance traveled by A to perform this
search is at most 6. One final probe then determines
which of the two width-1 squares contains a POI, which
again requires moving A only a small constant distance.
And finally, in order to reach the location of the POI,
A must move a final distance of at most 9.

Our algorithm may require up to 2[log n]+3 probes to
find a width-1 square containing a POI, but recall that
our objective is to reach a position within a distance of
1 of our POL. In truth, we can loosen our requirements
to only finding a width-2 square containing a POI, such
that its center is at most 1 unit away from the edges.
Each binary search will then take one fewer probe,
resulting in a total of 2[log n]+1 probes. And as desired,
the total distance traveled by A is at most 26,1, +O(1),
where i, is the distance to the nearest POI.

X [ T IXT ]

Figure 5: The second phase of the 2D CBS algorithm,
where a POI is known to exist on a width-1 edge. One
more binary search is conducted, where the probe moves
along a line perpendicular to the center of the edge.
After this, one final probe is necessary to determine
which of the two 1-by-1 regions contains a POI.

3 Extended Search Strategies

In this section, we expand on the key results of the
previous section and show how to generalize them to
higher dimensions.

Orthant Algorithm. As a warmup, we first extend
our quadrant and octant algorithms to operate in higher
dimensions. In this context, an orthant is the higher-
dimensional analogue of a quadrant (in 2D) or octant
(in 3D), where each k-dimensional hypercube has 2*
orthants. By searching at most 2¥ — 1 orthants per layer,
we can guarantee that we will find a POI within at
most (2¥ — 1)[logn] probes, where k is the dimension
of our search space, while receiving at most [logn]
responses. To reduce the total distance traveled, we
always probe adjacent orthants, which can be done by
following a Gray code, sometimes known as a single-
digit code [12]. The distance between the centers of two
adjacent orthants in the original hypercube is n under
both the L and L., metrics, so in the first layer alone
we may travel a distance of over 2¥n. Certainly such an
algorithm should not be used when distance traveled is
of any concern.

Generalized Central Binary Search (CBS) Al-
gorithm. In this section we extend our 2D CBS algo-
rithm to k dimensions under the L., metric. Consider
our true objective of a search strategy: to find a point
in space that is within distance 1 of a POIL In k-
dimensional space, this means a point with coordinates
Z1,...,Tk, where each coordinate is within distance 1 of
the corresponding coordinate of a POI. As with the 2D
case, we will split our algorithm into separate phases,
where in each phase we will fix the coordinates of at
least one of the dimensions, thus effectively reducing
the dimension of our search space by 1. Let phase p
refer to the phase in which our search space is effectively
confined to a p-dimensional subspace. After at most
k phases, we will have fixed all k coordinates, and
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therefore we will have found a POIL. As in the 2D
case, each phase p starts by a binary search for the
(approximate) radius, 5~p, of the smallest cube that
contains at least one POI. Recall that each binary search
takes at most [logn]| probes. While A is stationary in
our p-dimensional subspace during each binary search,
for any phase p < k, A may need to move up
to 5~p < Omin + 1 units overall (in the original k-
dimensional space) to conduct the search. Regarding
distance traveled, during the first phase, when p = k, A
can remain at the origin, while for all subsequent phases,
A may need to move up to 6;, < Omin + 1 units. This
movement is necessary since although we visualize the
search as oc After this search, we are guaranteed that
at least one POI contains a coordinate that is within
distance 1 of :|:5~p.

In p dimensions, after the binary search determines
our radius 6;,, we consider a p-cube with radius (5~p, where
we know that the POI is located within distance 1 of
one of the cubes’ facets. In our 2D algorithm, we were
able to determine not only which coordinate to set (the
x or the y), but also which sign to set (£) using only
two probes. The first probe eliminated two of the four
edges, and the second probe eliminated one of the two
remaining edges. See Figure 4 (right). Intuitively, it may
seem possible to extend this idea to our p-cube, halving
the number of facets we consider with each probe. Doing
so would allow us determine the facet in log(2p) probes,
but this is unfortunately not possible in general.

One way to build this intuition is to consider the
corners of our p-cube. The distance between any two
corners is 25;,, so any probe that tests for the presence of
a POI in two corners concurrently must have a radius of
at least (5;,. However, such a probe, when initiated from
the center of the cube, will encompass it entirely and
not providing any new information, and when initiated
from any other point, will include regions outside of it
which may contain other POIs. Therefore, in the case
of multiple possible POIs, we cannot probe multiple
corners of the cube concurrently. This is unfortunate,
since a p-cube has 2P corners, and since each of its
facets contains 2P~! corners, if the POI is located within
distance 1 of a corner, we may need to probe 2P~!
corners before determining which facet contains the
POI. With this unfortunate observation in mind, not
only do we need to individually probe each facet, but our
probes must be smaller than 5;,, such that each probe
may not include the (lower dimensional) boundary of
the facet. In the case of 3D cubes for example, each
probe may not cover the edges nor corners of the
face being probed. Therefore, we resort to not only
individually probing each of the 2p facets, but also the
lower-dimensional faces, as described in Algorithm 2.

The only remaining detail is the ProbeFace (f) oper-
ation for an arbitrary (p — a)-dimensional face f.

Algorithm 2 Finding Cube Face near POI

1: Output: highest-dimensional p-cube face f near at
least one POL.

2: fora=1,...,pdo

3: for f € (p — a)-dimensional cube faces do

4: L if PROBEFACE(f) then

5: _ return f > POI is near face

Lemma 1 Consider a (p — a)-dimensional face [ of
a p-cube of radius 5;, centered at the origin. f can be
defined by a unique vector s € {—1,0,1}? of length
p, where ‘a’ values are fixed to +1, and the remaining
values are 0, such that any point x of f satisfies s-x =
a5~p. ProbeFace(f) can be performed by moving A to
coordinate s and conducting a probe with radius 5;, —1.

Using this lemma, which we prove in Section A, we
are able to probe each face by moving A at most one
unit from the origin under the L., metric (since the
maximum absolute value of s is 1). Since the number of
faces required to probe is independent of n, we obtain
that the total number of probes required is at most

k[logn]| + g(k), (1)

for some function g(k) independent of n, and the total
distance traveled is

D(n) < k- Omin + 29(k), (2)

with the factor of 2 accounting for the fact that A
must return to the origin after each face probe. In other
words, for any constant k, we get

P(n) < Ek[logn] +0O(1) and D(n) <k-dmin + O(1).

In the appendix, we show that g(k) < 3¥ and discuss
several realistic assumptions under which we can bound
g(k) to just k(k+1), as long with experimental evidence
supporting this going up to £ = 8. The biggest
bottleneck for adapting CBS for & > 2 dimensions to the
L1 metric is that the faces of cross-polytopes are not, in
general, other cross-polytopes, although we conjecture
that a similar algorithm can be developed.
Input-Sensitive Probe Complexity. There may
be a scenario where the probes themselves are very
expensive, and we may not have a good estimate for
the distance dn,in to the nearest POI. In this case, A
can start by performing an exponential search from
the origin, increasing the probe radius by a factor of
2 per probe, until the first successful probe. Doing so
requires at most [log dmin | probes, and would limit the
initial search area radius to dmin < n < 20min, from
which we can use our preferred algorithm to find the
POL. For example, when using the central binary search
algorithm, we achieve P(n) < (k + 1)[log émin | + O(1).
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A Omitted Details and Results

In this section, we provide more details and results
omitted from the main text.

The 3D Domino Algorithm. In the main text, we
described how the 3D domino algorithm can indefinitely
half the remaining search volume for every probe once
reaching a configuration we refer to as a 4-domino. In
this configuration, we have four equally sized d x d x d
cubes, where a POI is known to exist in one, and all the
rest are known to be empty, with the cubes arranged
in a 2x2x1 grid. See Figure 6. The key step glossed
over in the main text is how to efficiently reach this
configuration.

Figure 6: The configuration referred to as a 4-domino.
After reaching this configuration, we can indefinitely
halve the remaining search volume with every probe.

Perhaps the most natural idea that comes to mind
is to split the initial search cube into its 8 equally
sized octants, and then sequentially probe each of them
until we reach a 4-domino configuration. However, since
the 4-domino configuration relies on the fact that 3
regions are known to be empty, it is possible that no
such configuration exists, e.g., if there exists a POI in
every octant. Recall that our objective with the 3D
domino algorithm is to minimize the number of probes
to 3[logn] + O(1), meaning that we must in general
reduce the search volume by a factor of 8 after every
3 probes. Each octant has an eighth of the volume of
the original search cube, and thus, as long as one of
the first 3 probes succeeds, we still succeed in reducing
the search volume by a factor of 8. The case of a POI
in every octant is therefore a very lucky case, since we
are able to reduce the search volume by a factor of 8 on
every probe. Our goal therefore, is to conduct the first 3
probes in such a way that even if all three of them fail,

we are guaranteed to reach a 4-domino configuration.
Unfortunately, this is not possible. Figure 7 depicts one
possible scenario. In fact, no matter where the first 3
probes are conducted, POIs may be placed adversarially
such that after those probes no 4-domino configuration
exists.

/

/
/
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Figure 7: One possible configuration of the search cube
after the first 3 probes of the 3D domino algorithm.
Since there exists a POI in every octant in the top
half of the cube, there does not exist any 4-domino
configuration in this layer.

This poses a problem, since if we only discover a
POI on our fourth probe and continue the algorithm
recursively from that octant, we have spent 4 probes
to reduce the search volume by a factor of 8, which,
if done repeatedly would lead to a probe complexity of
P(n) = 4[logn]. The 3D domino algorithm accounts for
this by considering another intermediate configuration,
which is very similar to the 2-domino configuration of
the 2D domino algorithm. In this configuration, we have
two equally sized d X d X d cubes, where a POI is known
to exist in one, and the other is known to be empty.
From this configuration, while we are generally able to
reduce the search volume by a factor of 8 with every
3 probes, returning to another 2-domino configuration.
However, if we get unlucky, these 3 probes in the 2-
domino configuration may fail to reduce the volume as
desired—but the only way for this to occur would induce
a valid 4-domino configuration, from which point we
can recurse indefinitely. Thus, such a failure can only
occur once throughout the course of our algorithm. See
Figure 8 for a depiction of the first 3 probes in the 3D
2-domino procedure. Note that this figure assumes that
the first probe is successful without loss of generality.
If either the second or third probe is successful, we
can simply recurse into another 2-domino configuration
with an eighth of the volume. Otherwise, we must just
perform one more probe in either of the remaining two
octants to reach a 4-domino configuration.


https://doi.org/10.1177/0278364920929398

270

CCCG 2025, Toronto, Canada, August 13-15, 2025

Figure 8: A depiction of the first 3 probes in the 3D 2-
domino procedure. If all 3 probes fail, we are guaranteed
to reach a 4-domino configuration.

Reaching this 2-domino configuration is easy, since,
just like in the 2D domino algorithm, we can simply
probe adjacent octants. Thus, our 3D domino algorithm
begins by probing adjacent octants until one succeeds. If
the first probe is successful, we simply recurse into that
octant. If a 4-domino configuration is reached, we can
recurse indefinitely. Finally, if a 4-domino configuration
is not possible, since at least one probe failed and we
probe adjacent octants, we are guaranteed to reach a
2-domino configuration, which we recurse into either in-
definitely or until it becomes a 4-domino configuration.
Overall, the worst case scenario is where we probe 7
octants before determining the location of the POI, after
which we recurse optimally in a 4-domino configuration
indefinitely. Such a scenario would lead to a probe
complexity of P(n) =17+ 3[logn/2] = 3[logn] + 4.

Reflecting on this algorithm, we see how, unlike the
2D domino algorithm which required a single domino
configuration which was easily reachable, the 3D domino
algorithm required a second intermediate configuration
with a separate algorithm on how to move from one
configuration to the other. This more tailored approach
was not necessary for the generalized CBS algorithm,
which is broken up into simple, binary search-like
phases, independent of the search space dimension.

Nevertheless, it might be interesting to consider
whether more domino-like configurations could be used
to extend our domino algorithms to higher dimensions.
It is straightforward to see that for a k-dimensional
search space, there exists a 2¥~!-domino configuration,
where all but one of the 25~! cubes are known to be
empty, after which point we can recurse indefinitely,

halving the search volume with every probe, such as the
2-domino configuration in the 2D case and the 4-domino
configuration in the 3D case. Further, you can consider
a 2¥~2_.domino configuration, a 2*~3-domino, and so
on, until reaching a 2-domino configuration. While it is
trivial to reach a 2-domino configuration from the initial
hypercube in any dimension, it is not clear whether
a transition algorithm exists from a 2-domino to a 4-
domino configuration for dimensions higher than 3. In
fact, we conjecture that this transition breaks down in
dimensions higher than 3, ending such a generalization,
but we leave this as an open question.

The Generalized CBS Algorithm. In the Gen-
eralized CBS algorithm, after the binary search of
each phase which determines an approximate remaining
distance, 5;, to the nearest POI, we must determine
which of the k coordinates to set to :i:5~p. In Algorithm 2,
we describe a procedure to do this by iteratively probing
smaller and smaller faces of our p-cube using a pro-
cedure we refer to as ProbeFace, which relies on the
following lemma.

Lemma 2 (same as Lemma 1) Consider a (p — a)-
dimensional face f of a p-cube of radius 5; centered
at the origin. [ can be defined by a unique vector
s € {=1,0,1}? of length p, where ‘a’ values are fized
to £1, and the remaining values are 0, such that any
point x of f satisfies s -x = a5~p. ProbeFace(f) can be
performed by moving A to coordinate s and conducting
a probe with radius 6, — 1.

Proof. Let us briefly consider which qualities we re-
quire from our probe.

1. The probe must not include any regions outside of
our p-cube.

2. The probe should include the entire face f, besides
at most 1 unit of padding from its boundary which
will be covered by subsequent probes of lower-
dimensional faces.

3. The probe for a (p — a)-dimensional face f should
not include any other regions that are not already
known to be empty.

We prove the first property by contradiction. Assume,
for the sake of contradiction, that the probe includes a
point z that is outside the p-cube of radius 6;, centered
at the origin. A point x is outside this p-cube if, for at
least one coordinate i, its absolute value |z;| is greater
than 6;,. Without loss of generality, let us assume x; > 5;,
for this specific coordinate i. The probe is centered at s
(where s; € {—1,0,1}, so s; < 1 for all coordinates j)
and has a radius of 5~p — 1. For a point x to be included
in this probe (which is itself a p-cube), it must satisfy
|z; — 84| <8, — 1 for all coordinates j.
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Focusing on our specific coordinate i: We have z; >
(5~p. We also know that s; < 1. Consider the difference
r; — 8;. Since x; > 5;, it follows that: x; — s; > (5;, — 8.
Given s; < 1, we have (fp — 85 > 5;, — 1. Therefore,
T — 8 > (fp — 1 and consequently |z; — s;| > 5;, - 1.
This result directly contradicts the condition for z to
be inside the probe.

We now turn to the second property. The probe P is
centered at the coordinate s and has a radius of 4, — 1 in
each dimension. Thus, a point y is within this probe if it
satisfies |y; —s;| < (5},—1 for all coordinates j = 1,...,p.

Let Iwee = {j | s; = 0} be the set of indices
for coordinates where s; is zero. These are the “free”
coordinates along which the face f extends. For any
x € f, xj € [~0p,0y] for j € Ifee. Similarly, let
Ifixea = {j | s; € {—1,1}} be the set of indices for
coordinates where s; is non-zero. These are the “fixed”
coordinates. For any point = € f, its j-th coordinate is
determined by s;: 2; = 5,0, if j € Ifixed-

Let us consider an arbitrary point x € f. We wish to
show that x satisfies the condition |z; — s;| < d, — 1 for
each coordinate j, considering two cases:

o If j € Ifxeq, then z; = s;0, for any point = € f.
We examine the condition for the probe: |z; —s;| =
|50, — 85| = [s;(0, — 1)|. Since s; € {—1,1}, we
have |s;| = 1. Therefore, |s;(0, — 1)| = |6, — 1].
Assuming &, > 1 (so that the probe radius d, — 1
is non-negative), we have |3, — 1| = d, — 1. Thus,
for all j € Ifixea, the condition |z; — s;| < 6~p —1is
satisfied.

o If j € Ipee, then s; = 0. For a point x € f, its
j-th coordinate 2; can range within [~d,,d,]. The
condition for x to be included in the probe P with
respect to this j-th coordinate is |z; —s;| < 5y — 1.
Since s; = 0, this simplifies to |z;| < §, — 1. This
means that for coordinates j € Ifee, the probe
P includes points x € f if their j-th coordinate
z; lies in the interval [—(6, — 1),8, — 1]. While
this is notably not the entire range of x; (which
is [~0p,0,]), it includes everything besides a 1-
unit “padding” from the boundary of the face f
along this coordinate’s axis, satisfying the second

property.

Finally, we turn to the third property. We know from
our algorithm, Algorithm 2, that all higher-dimensional
faces have been probed and are known to be empty.
Further, we know that the internal region (besides a 1-
unit padding) of the p-cube is empty. Thus, the probe
must only avoid probing lower or equal-dimensional
faces. Consider one such (p — a’)-dimensional face f’
where @’ > a, which is defined by a vector s’ &
{-1,0,1}?. Since f’ has at least a' coordinates fixed
to &1, it must be the case that s’ has at least one
coordinate j such that s; = %1 and s; = 0. This means

that for all points in f, the j-th coordinate is fixed to
80p, i.e., that for any point 2’ € f', we havg || = 0p.
However, since our probe only has radius J, — 1, and
since s; = 0, we have |2} — s;| = [2}] = 0, > Jp — 1.
Thus, our probe does not include any points in f/. O

We can now bound the total number, g(k), of
ProbeFace calls made throughout the course of the
algorithm. A p-cube contains 3P — 1 faces. Thus, the
total number of faces we must probe is technically
3P — 2 since we can skip the final probe.

However, since we start from higher-dimensional
faces, if we take more than 2p probes, we are guaranteed
to find a POI in a face which is lower by at least 2
dimensions, reducing p by 2 instead of just 1. It is
straightforward to see that, in the worst case, a POI
will only be located in the final probe in the initial,
k-dimensional cube, requiring 3% — 2 probes. While
this result is exceedingly unlikely, and is not possible
if we require that all of the POIs’ coordinates differ
in magnitude by at least 1, it is nevertheless possible
under our assumptions, and thus we only bound g(k)
by 3% — 2.

As alluded to above, however, if we do require that
all of the POIs’ coordinates differ in magnitude by at
least 1, we know that the POIs will always be located
in a facet of our p-cube in each phase, requiring at most
2p probes. Over the course of the algorithm, our total
number of probes will therefore be bounded by

k

> 2p=k(k+1),

p=1

thus bounded g(k) = O(k?).

Alternatively, if we only consider cases where k is
small, i.e., k = o(loglogn), then we know that the total
number ProbeFace calls made for any dimension p, 3P,
is bounded by 3'°81°8™ = o(logn). However, if we take
more than 2p probes, decreasing p by 2, we can charge
our extra probes to the binary search of the p—1 face we
skipped, which we expected to take [logn| probes. Thus
our worst case is the same as our previous example, and
we similarly obtain that g(k) = O(k?).

B Experimental Results

In this section we compare how each algorithm per-
forms experimentally in terms of our three metrics:
the number of probes made, the distance traveled, and
the number of POI responses. We compared results
between the domino algorithms (in 2D and 3D), the
orthant algorithm (in 1D — 8D), and the generalized
CBS algorithm (also in 1D — 8D). Each algorithm was
executed 60 million times, where n = 220. The POIs
were placed at uniformly random locations in the search
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Domino Algorithms Orthant Algorithm Generalized CBS Algorithm
k o Avg Max Bound o Avg Max Bound o Avg Max Bound
1D — — — — | 0.00 0.95 0.95 1.00 | 0.00 0.95 1.00 1.00
2D | 0.04 1.92 1.95 2.05 | 0.18 2.14 2385 3.00 | 0.03 193 200 2.15/2.25
3D | 0.11 2.92 3.05 3.20 | 046 4.16 6.35 7.00 | 0.07 296 3.10  3.40/4.10
4D — — — — | 098 8.02 13.2 15.0 | 0.10 4.00 4.25 4.75/7.75
5D — — — — | 2.00 156 26.1 31.0 | 0.14 5.06 5.40 6.20/16.8
6D — — — — | 4.02 30.9 50.6 63.0 | 0.17 6.15 6.65 7.75/42.0
7D — — — — | 805 61.3 103 127 1 0.21 7.26 7.95 9.40/116
8D — — — — | 16.1 122 209 255 | 0.25 8.40 9.30 11.2/336

Table 1: Normalized number of probes (P/logn) for different search algorithms across dimensions. The best (lowest)

values are highlighted in bold.

area, namely such that each of their coordinates was
uniformly random in the range [0, n]. These experiments
focused on the L., metric.

It is clear from our results that both the domino and
CBS algorithms significantly outperform the generalized
orthant algorithms for any dimension & > 1, where
in 1D space all algorithms are equivalent. It is also
possible to see that, as the dimension k increases, the
normalized number of probes for the CBS algorithm
gradually increases, as predicted by the g(k) dependence
in its probe complexity. See Figure 9.

¢  Orthant Algorithm
Generalized CBS Algorithm
Domino Algorithms

[

Normalized # of Probes (P/k[logn])
——

|

1D 2D 3D 4D

N

Figure 9: Simulation results for P/k[logn]|. Error bars
represent one standard deviation from the mean.

Regarding the distance traveled by the search point,
A, we see that not only does the CBS algorithm, be-
ing instance-optimal with regards to distance traveled,
travel significantly less distance with respect to the
nearest POI’s distance on average, but it also has a
much lower variability in the distance traveled than the
other algorithms. See Figure 10.

Number of Probes Made (P). In Table 1 we
compare the number of probes made by each algo-
rithm operating in different dimensions. Each result
is normalized by logn, such that the theoretical lower
bound for any algorithm after the normalization is just
k for the k-dimensional case. As expected, the domino
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Figure 10: Simulation results for D/&mi,, where n = 220,

algorithms, specifically designed to minimize the num-
ber of probes, outperform the other algorithms in 2D
and 3D across the average, maximum, and theoretical
bounds. Interestingly, the generalized central binary
search (CBS) algorithm, despite performing slightly
worse than the domino algorithms, performed slightly
more consistently, with a smaller standard deviation
than the domino algorithms. The orthant algorithms,
as expected, perform very poorly in this metric, with
their average appearing to be, as expected, roughly
2% /2. Tt should be noted that the generalized CBS
algorithm may theoretically only find a POI when
probing the final face it queries in the k-dimensional
space, recalling that there may be up to g(k) =
3% — 1 faces. In theory, this may, in 8 dimensions
and beyond, lead to a worse performance than the
orthant algorithm. However, recall that only the first 2k
faces are facets, with all the others being progressively
lower dimensional. These first 2k facets in general will
be much much larger than all the subsequent faces,
meaning that, unless a POI is placed adversarially, it is
most probable that the POI will be found in one of the
first 2k faces. In fact, we can estimate this probability
numerically.

Consider the case where we have a k-dimensional
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Domino Algorithms Orthant Algorithm Generalized CBS Algorithm
k o Avg Max Bound o Avg Max Bound o Avg Max Bound
1D — — — [ ~10% 278 ~10° ~10°]0.00 1.00 1.00 1.00
2D | 172 7.68 ~10* ~10° 171 800 ~10* ~10°|0.29 1.50 2.00 2.00
3D | 7.17 11.0 ~10® ~ 107 814 120 ~10® ~107 | 0.41 2.00 3.00 3.00
4D — — — — 104 213 ~10°>° ~107 | 0.50 2.50 3.99 4.00
5D | — @ — — — | 16.7 40.0 ~10° ~107 | 0.58 3.00 4.97 5.00
6D — — — | 297 768 ~10° ~10%|0.65 3.50 5.94 6.00
mMm| —  — — — | 552 149 ~10° ~10% | 0.71 4.00 6.86 7.00
sD| — — — 105 293 ~10° ~10% | 0.76 4.50 7.76 8.00

Table 2: Normalized L., distance (D/dmin) for different search algorithms across dimensions.

width-1 shell with radius d,,;,, with only one POI placed
uniformly at random in the shell. We probe each facet
with a radius 0y, — 1, covering a volume contained by
that facet of 2871 (0 — 1)¥~1. Overall, the 2k facet
probes cover a volume of k2¥ (8, — 1)¥~1. The total
volume of the k-dimensional shell is the total volume of
the hypercube, 2¥6%. = minus the volume of the inner
shell, which is 2% (0, — 1)*. Together, we get that the
ratio of these volumes is

k((smin - ]-)kil
5§1in - (5min - 1)k.

Assuming that 0., is at least k, this ratio is min-
1

imized as k — oo, where it approaches —— =~ 0.58,
where e is Euler’'s number. In other words, assuming
that a POI is placed uniformly at random, and that
the search area radius is only moderately larger than
its dimension, it is most probable that the POI will
be found in one of the first 2k facets. Surely this is
the case for our experiments where the search area
radius n = 22° is much larger than the dimension
k < 8. As such, we included not only the theoretical
bounds for the generalized CBS algorithm, but also the
bounds assuming we always find the POI in one of the
facets we probe during each phase. Our experimental
results confirm that, despite the millions of simulations
performed, this bound was never violated. This further
supports our claim that under reasonable conditions,
g(k) can be more accurately bounded by k(k 4 1).
Distance Traveled (D). In Table 2 we compare
the distance traveled by A for each algorithm operat-
ing in different dimensions. Each result is normalized
by Omin, such that the theoretical lower bound for
any algorithm after the normalization is just 1. We
expect any instance-optimal algorithm, with respect
to the distance traveled, to consistently travel within
a constant multiple of this distance. Our generalized
CBS algorithm expects to travel a distance of at most
k times the minimum distance, for example. On the
other hand, non-instance-optimal algorithms, such as
the orthant and domino algorithms, expect to travel
a distance more dependent on the area of the search

area, n, and the dimension, k, essentially ignoring
the position of the nearest POI. In the worst case,
the POI is placed directly at the origin, but since
we disallowed this in our experiments, they would be
placed at distance 1 from the origin, thus maximizing
the ratio of the distance traveled to the minimum
distance. While this extreme case evidently does not
occur in our experiments, it is clear from our results how
much better the generalized CBS algorithm performs.
It outperforms the orthant and domino algorithms on
all metrics and across all dimensions, often by several
orders of magnitude. Reassuringly, the generalized CBS
algorithm never travels a distance greater than k times
the minimum distance, and seems to on average travel
a distance of (k4 1)/2 times greater, with a moderate
standard deviation of roughly 20% of the average. It
is worth noting that the search point, A, in domino
algorithms appears to travel marginally less distance
than a search point in the orthant algorithm.

Number of Responses (R). Up until this point, the
orthant algorithm has performed poorly when compared
to the domino and generalized CBS algorithms. Under
the number of responses metric, however, the orthant
algorithm is able to shine, performing the best on all
metrics and across all dimensions, as shown in Table 3,
tying with the generalized CBS algorithm only in 1D.
This supports our claim that the orthant algorithm is
a good choice when POI responses either carry a high
cost or pose a high risk. It is worth noting that while the
generalized CBS algorithm certainly performs worse,
especially in higher dimensions, in 1-3D it performs
comparably. Our results support the claim that the
generalized CBS algorithm is a good default choice,
performing competitively with regards to the number
of probes and responses, while performing by far the
best in terms of distance traveled.
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Domino Algorithms Orthant Algorithm Generalized CBS Algorithm
k o Avg Max Bound o Avg Max Bound o Avg Max Bound
1D — — — — | 0.11 047 0.95 1.00 | 0.11 0.47 0.95 1.05

2D | 0.15 093 1.70 2.05 | 0.09 0.71 0.95 1.00 | 0.15 094 1.75 2.10
3D | 0.18 1.39 235 3.20 | 0.07 0.83 0.95 1.00 | 0.18 1.42 245 3.15

4D — — — — | 0.05 0.89 0.95 1.00 | 0.21 1.88 3.00 4.20
5D — — — — | 0.04 0.92 0.95 1.00 | 0.23 233 3.50 5.25
6D — — — — |1 0.03 0.94 0.95 1.00 | 0.25 2.78 4.20 6.30
7D — — — — 1 0.02 0.94 0.95 1.00 | 0.27 3.22 4.65 7.35
8D — — — — 1 0.01 0.95 0.95 1.00 | 0.28 3.65 5.25 8.40

Table 3: Normalized number of responses (R/logn) for different search algorithms across dimensions.
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