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Minimum Selective Subset on Some Graph Classes

Bubai Manna*

Abstract

In a connected simple graph G = (V (G), E(G)), each
vertex is assigned a color from the set of colors C =
{1, 2, . . . , c}. The set of vertices is partitioned as
V (G) =

⋃c
ℓ=1 Vℓ, where all vertices in Vℓ share the same

color ℓ. A subset S ⊆ V (G) is called Selective Subset if,
for every vertex v ∈ V (G), if v ∈ Vℓ, at least one of its
nearest neighbors in S ∪ (V (G) \ Vℓ) has the same color
as v. The Minimum Selective Subset (MSS) problem
seeks to find a selective subset of minimum size. The
problem was first introduced by Wilfong in 1991 [18] for
a set of points in the Euclidean plane, where two ma-
jor problems, MCS (Minimum Consistent Subset) and
MSS, were proposed.

In graph algorithms, the only known result is that the
MSS problem is NP-complete, as shown in [2] in 2018.
Beyond this, no further progress has been made to date.
In contrast, the MCS problem has been widely studied
in various graph classes over the years. Therefore, in
this work, we also extend the algorithmic study of MSS
on various graph classes. We first present a O(logn)-
approximation algorithm for general graphs with n ver-
tices and regardless of the number of colors. We also
show that the problem remains NP-complete even for
planar graphs when restricted to just two colors. Fi-
nally, we provide linear-time algorithms for computing
optimal solutions in trees and unit interval graphs for
any number of colors1.

1 Introduction

Many supervised learning methods use a colored train-
ing data set T in a metric space (X, d), where each
element t ∈ T has a color from the set of colors
C = {1, 2, . . . , c}. The goal is to find a subset S ⊆ T
with minimum cardinality such that every element of T
is either in S or has at least one nearest neighbor in S
with the same color. This problem, known as the Min-
imum Consistent Subset (MCS), was first introduced
by Hart [13], whose work has received more than 2,800
citations.

The problem is NP-complete for three or more colors [18]
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1The full version of this work can be found in [17].

and remains NP-complete for two colors [14] in R2. It is
also W[1]-hard when parameterized by output size [6].
Various algorithms for the problem MCS in R2 have
been proposed [2,4,6,18], highlighting its significance in
machine learning and computational geometry. How-
ever, the problem MCS is closely related to MSS which
is discussed by Wilfond [18].

The problem MSS plays a crucial role in optimizing
data selection by identifying the smallest subset that
preserves essential information. This is particularly
useful in applications such as fingerprint recognition,
character recognition, and pattern recognition, where it
helps reduce redundancy and improve decision-making
in classification and feature selection tasks.

Wilfong [18] proved that MSS is also NP-complete even
with two colors in R2. Recently, [2] established an PTAS
with c-color points and showed that the problem isW[2]-
hard when parameterized by the size of the solution,
while MSS is contained in W[1] when the number of
colors is two in R2.

1.1 Notations and Definitions

For any graph G = (V (G), E(G)), we denote the set of
vertices by V (G) and the set of edges by E(G). Without
loss of generality, we use [n] to denote the set of integers
{1, . . . , n}. We use an arbitrary vertex color function C :
V (G) → [c], such that each vertex is assigned exactly
one color from the set [c]. For a subset of vertices U ⊆
V (G), let C(U) represent the set of colors of the vertices
in U , formally defined as C(U) = {C(u) | u ∈ U}.
For any two vertices u, v ∈ V (G), the shortest path
distance between u and v in G is denoted by d(u, v).
d(u, v) is called hop-distance between u and v. For a
vertex v ∈ V (G), the distance between v and the set
U ⊆ V (G) in G is given by d(v, U) = minu∈U d(v, u).

The nearest neighbors of v in the set U is denoted as
N̂(v, U), formally defined as

N̂(v, U) = {u ∈ U | d(v, u) = d(v, U)}.

Therefore, if v ∈ U , then N̂(v, U) = {v}.
G[U ] denotes the subgraph of G induced by U ⊆ V (G),
and |U | is the cardinality of U . We use standard graph-
theoretic notation and symbols as presented in [12].

Suppose G = (V (G), E(G)) is a given connected and
undirected graph, where the vertices are partitioned into
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Figure 1: Colors: blue= square, red= disk, or-
ange=fdisk and V (G) = Vblue ∪Vred ∪Vorange, where
Vblue = {v1}, Vred = {v2, . . . , v13}, and Vorange = {v14,
. . . , v20}. The sets {v1, v4, v5, v10, v11, v17} and {v1, v3,
v4, v8, v11, v17} both are MCS. Similarly, {v1, v2, v3,
v7, v8, v9 , v13, v14} and {v1 , v4, v5 , v7, v10, v11, v13,
v14 } are also MSS. Brown-dotted regions indicate the
blocks. The complete list of blocks is B1 = {v1}, B2 =
{v2, . . . , v7}, B3 = {v8 , . . . , v13}, B4 = {v14, . . . , v20}.

c color classes, namely V1, V2, . . . , Vc. This means that
each vertex in V (G) has a color from the set [c], and each
vertex in Vℓ has color ℓ. A Minimum Consistent Subset
(MCS) is a subset S ⊆ V (G) of minimum cardinality
such that for every vertex v ∈ V (G), if v ∈ Vℓ, then

N̂(v, S) ∩ Vℓ ̸= ∅.

The definition of a selective subset is as follows:

Definition 1 A subset S ⊆ V (G) is called a Minimum
Selective Subset (MSS) if, for each vertex v ∈ V (G), if
v ∈ Vℓ, the set of nearest neighbors of v in S ∪ (V (G) \
Vℓ), contains at least one vertex u such that C(v) =
C(u), and |S| is minimum.

In other words, we are looking for a vertex set S ⊆ V (G)
of minimum cardinality such that every vertex v has at
least one nearest neighbor of the same color in the graph,
excluding those vertices of the same color as v that are
not in S.

Figure 1 illustrates that MCS and MSS are distinct
and may not be unique for a given graph. The selective
subset problem on graphs is defined as follows:

Selective Subset Problem on Graphs

Input: A graph G = (V (G), E(G)), a color func-
tion C : V (G)→ [c], and an integer s.
Question: Does there exist a selective subset of
size ≤ s for (G,C)?

Banerjee et al. [2] proved that MCS is W[2]-hard [7]
when parameterized by the minimum consistent set size,
even with two colors in general graphs. Dey et al. [9–11]
provided polynomial-time algorithms for MCS on some
simple graph classes including path, spider, caterpillar,
comb and trees (for trees, c = 2). XP and NP-complete
as well as the FPT algorithms (when c is a param-
eter) on trees, can be found in [1, 3]. MCS is also
NP-complete in interval graphs [3] and APX-hard in cir-
cle graphs [15]. Variants such as the Minimum Consis-
tent Spanning Subset (MCSS) and the Minimum Strict
Consistent Subset (MSCS) of MCS have been stud-
ied in trees [5, 16]. However, the algorithmic results for
MSS have not been extensively studied to date. Baner-
jee et al. [2] only showed that MSS is NP-complete in
general graphs.

1.2 Results

Since only a hardness result for MSS in general graphs
is known, our work provides new insights into the com-
plexity and approximability of the problem, identify-
ing cases where efficient approximations are achievable
and where hardness persists. In Section 3, we present
a O(logn)-approximation algorithm for MSS in general
graphs, where the number of vertices is n and regardless
of the number of colors.

Planar graphs are fundamental structures in graph the-
ory and computational geometry, with many practical
applications and rich structural properties. Therefore,
in Section 4, we show that the problem MSS remains
NP-complete even when restricted to planar graphs with
just c = 2, highlighting the inherent difficulty of the
problem even on well-behaved graph classes.

Trees are simple graph classes that often admit efficient
algorithms, even when such algorithms are not possible
for more general graph families. Unit interval graphs,
which model intervals of equal length on the real line,
are widely studied due to their applications in schedul-
ing and biology and their tractable structure. Since
both of these graph classes have been well explored in
MCS [1, 3], it is natural and necessary to investigate
MSS in the same classes. Therefore, in Sections 5 and 6,
respectively, we present linear-time algorithms for find-
ing optimal solutions to the MSS problem on trees and
unit interval graphs with any number of colors. All
proofs of (∗)-marked results are in the full version [17].

2 Preliminaries

If all the vertices of a graph G are of the same color (that
is, G is monochromatic), then any vertex of the graph
is an MSS. Moreover, at least one vertex from each
color class must be included in every selective subset;
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otherwise, consider a vertex v ∈ Vℓ, and all vertices in
N̂(v, S ∪ (V (G) \ Vℓ)) must have a different color from
that of v, violating the condition for a selective subset.

Definition 2 A block is defined as a maximal connected
subgraph whose vertices share the same color.

Figure 1 illustrates an example of the blocks.

Lemma 1 Any selective subset must contain at least
one vertex from each block.

Proof. Suppose, for contradiction, thatM is a selective
subset of a graph G, but there exists a block Bi such
that M ∩Bi = ∅. Let the color assigned to the vertices
of Bi be ℓ, and let v ∈ Bi be any vertex.

Therefore, there must exist a nearest neighbor (say u) of
v in M ∪ (V (G)\Vℓ) such that C(u) = C(v); otherwise,
M would not be a selective subset. Since M ∩ Bi = ∅,
we have u /∈ Bi. Thus, u ∈ Bj for some j ̸= i.

Let P denote the shortest path between v and u. As
Bi and Bj are distinct blocks and C(v) = C(u), there
must exist at least one vertex w ∈ P such that C(w) ̸=
C(u). This implies that w lies closer to v than u does,
i.e., d(v, w) < d(v, u), and w ∈ M ∪ (V (G) \ Vℓ) with
C(w) ̸= C(u).

Hence, instead of u, w is the nearest neighbor of v inM∪
(V (G) \ Vℓ) with C(w) ̸= C(v), violating the definition
of a selective subset. This contradiction completes the
proof. □

The above proof indicates that, for any vertex v ∈ Bi,
either v itself must belong to M , or there must exist a
vertex u ∈ Bi such that u ∈ M and u is the nearest
neighbor of v in M ∪ (V (G) \ Vℓ). In other words, each
vertex v ∈ Bi must have its nearest neighbor in M ∪
(V (G) \Vℓ) that also lies within Bi. Therefore, we have
the following observation:

Observation 1 The blocks are independent of each
other in the solution of a selective subset.

3 O(logn)-Approximation Algorithm of MSS in
General Graphs

Let G = (V (G), E(G)) be a graph with c colors and B1,
B2, . . . , Bk be the blocks in G. The Set Cover problem
is defined as follows: Given a universe I and a collection
of m subsets S, the goal is to select a minimum number
of subsets from S whose union covers all elements in I.
The reduction of MSS in G to the set cover problem is
as follows (see Figure 2).

Reduction. Let Bi,1 ⊆ Bi be the set of vertices ad-
jacent to at least one vertex of a different color, for
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Figure 2: Reduction to set cover. Colors: blue= square,
red= disk. Sets are B1,1 = {a1, a2, a3}, B2,1 = {a4, a5},
B1,2 = {b6}, B2,2 = {b7, b8, b9}. Sets are Ball

i,1 = {a1,
. . . , a5}, Ball = {b1, . . . , b9}, where bi = ai for i =
1, . . . , 5. The set elements for the set cover problem is
I = {e1, . . . , e5} where ei = bi = ai for i = 1, . . . , 5.
The subsets are given S1 = {e1}, S2 = S3 = {e2, e3},
S4 = S7 = {e4}, S5 = S8 = {e5}, S6 = {e1, e2, e3},
S9 = {e4, e5}. The elements inside the dotted rectangles
represent the sets. The selective subset is M = {b6, b9},
and the corresponding set cover is {S6, S9}.

each i = 1, . . . , k. For each vertex v ∈ Bi \ Bi,1, if
v in adjacent to at least one vertex of Bi,1, include

v in Bi,2. Let Ball
i,1 =

⋃k
i=1 Bi,1 = {a1, . . . , an1

} and

Ball =
⋃k

i=1(Bi,1 ∪ Bi,2) = {b1, . . . , bn2} where n1 ≤ n
and n2 ≤ n. Therefore, each bj is a vertex of either Bi,1

or Bi,2 for j = 1, . . . , n2 and for some i ∈ {1, . . . , k}.
Construct a universe set I = {e1, . . . , en1}, where each
ei corresponds to vertex ai ∈ Ball

i,1 . For each bi ∈ Ball,
define a set Si ⊆ I such that ej ∈ Si if the corresponding
vertex aj and the vertex bi are either the same vertex or
adjacent and in the same block. Let S = {S1, . . . , Sn2

}.

Lemma 2 ∗ If a set cover of I uses some sets of S, then
the vertices represented by those sets form a selective
subset, and vice versa.

Theorem 3 The Minimum Selective Subset problem
admits an O(log n)-approximation in general graphs.

Proof. By Lemma 2, the MSS problem reduces to a
Set Cover instance where the universe size is n1 ≤ n,
with n = |V (G)|.
The greedy algorithm for Set Cover achieves an
O(logn1)-approximation. Since n1 ≤ n, it follows that
log n1 ≤ log n, and therefore the approximation factor
becomes O(log n) in terms of the original graph size.

As the reduction preserves the approximation guaran-
tee, this yields an O(log n)-approximation algorithm for
the MSS problem in general graphs. □
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Figure 3: Reduction from PRM-3SAT to MSS in
planar graph. Colors: blue= square, red= disk. The
SAT expression is θ = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6. The
clauses are c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x3 ∨ x4), c3 =
(x4∨x5∨x6), c4 = (x1∨x3∨x4), c5 = (x1∨x4∨x6), c6 =
(x4 ∨ x5 ∨ x6) with variables x1 = x2 = x6 = 1 and
x3 = x4 = x5 = 0. The vertices inside small circles are
in the selective subset.

4 NP-Hardness of MSS in Planar Graphs

We reduce an instance of Planar Rectilinear Monotone
3-SAT (PRM-3SAT) θ to a bichromatic planar graph.
The definition of PRM-3SAT is provided in [17]. In [8],
it is shown that PRM-3SAT is NP-complete. It is also
shown that, given a PRM-3SAT formula θ, its embed-
ding described in [8] can be obtained in polynomial time.

Reduction. We embed an instance of PRM-3SAT for-
mula θ with n variables x1, x2, . . . , xn and m clauses
c1, c2, . . . , cm into a bichromatic planar graph G =
(V (G), E(G)) (see Figure 3).

Variable gadget: For each variable xi (1 ≤ i ≤ n), we
construct a variable gadget Xi shown as a brown dotted
rectangle in Figure 3, as follows: A path (xi,1, xi,2, xi,3)
of length two, where C(xi,1) = red and C(xi,2) =
C(xi,3) = blue, is called the positive literal path of xi.
Similarly, a path (xi,1, xi,2, xi,3) of length two, where
C(xi,1) = red and C(xi,2) = C(xi,3) = blue, is called
the negative literal path of xi.

The vertex xi,1 is adjacent to xi,1, and xi,2, xi,3 are
adjacent to xi,3, xi,2, respectively. Additionally, xi,3 is
adjacent to xi,3.

Clause gadget: For each clause cj (1 ≤ j ≤ m), the
clause gadget Cj is as follows: A path (cj,1, cj,2, cj,3) of
length two, where C(cj,1) = C(cj,2) = red and C(cj,3) =
blue, is called clause path for the clause cj .

If a clause cj consists of three positive literals xi, xl, xt

(i.e., cj = (xi∨xl∨xt)), then the vertex cj,3 adjacent to
xi,3, xl,3, and xt,3 from their respective positive literal

paths. If cj has three negative literals xi, xl, xt, then
cj,3 is adjacent to xi,3, xl,3, xt,3 from the corresponding
negative paths as shown in the Figure 3.

The construction of the graph G is now complete. No-
tably, G remains planar because its embedding (Fig-
ure 3) closely resembles the PRM-3SAT embedding de-
scribed in [8]. Thus, for n variables and m clauses, the
bichromatic planar graph G contains 6n + 3m vertices
and 8n+5m edges. We set V (G) = Vr ∪Vb, where Vr is
the set of red vertices and Vb is the set of blue vertices.

Lemma 4 ∗ θ is satisfied if and only if G has a selective
subset of size 2n+m.

Theorem 5 Finding a minimum selective subset is
NP-complete for planar graphs with two colors.

Proof. It is easy to see that the problem is in NP. As
for NP-complete, Lemmas 4 establishes a relationship
between θ and the size of the selective subset of G in
polynomial time. Therefore, MSS is NP-complete in
planar graphs. □

Remark. The above reduction remains valid even if
the pair of vertices {cj,1, cj,2} in each clause gadget is
assigned a distinct (except blue color), unique color not
shared across gadgets. That is, we may assign a dif-
ferent color to each such pair for 1 ≤ j ≤ m, and the
reduction still preserves the equivalence between satis-
fying the PRM-3SAT formula θ and the existence of a
selective subset of size 2n+m.

5 Linear-time Algorithm of MSS in Trees

We now describe a linear-time algorithm for finding a
MSS in tree. The key idea is based on Observation 1,
which tells us that we can solve the problem indepen-
dently on each block. So, to simplify notation and ideas,
we focus on just one block.

Let T = (V (T ), E(T )) be a tree rooted at a vertex r
with |V (T )| = n and a total of c colors. For each block
B, we compute a minimum selective subset MB using
Lemma 1. The algorithm has two phases: initialization
(Algorithm 1 in [17]) and selection (Algorithm 2 in [17]).
The final solution is the union of the subsets computed
for each block.

The algorithm follows these steps (see Figure 4):

Initialization (Algorithm 1).

� Start with the empty sets: MB := ∅, B1 := ∅, and
B2 := ∅.

� For each vertex v ∈ B, if v is adjacent to a vertex
of a different color, include v in B1.
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� For each vertex v ∈ B\B1, if v is adjacent to at
least one vertex in B1, then include v in B2.

� Define Ball = B1 ∪B2 (note that B1 ∩B2 = ∅).

Subtree Formation (refer to lines 1-4 in Algorithm
2).

� Since Ball ⊆ B, Ball induces one or more connected
induced subtrees in T , and each subtree consists of
vertices of the same color because Ball ⊆ B. We
consider such induced connected maximal subtrees.

� Let T v1 , T v2 , . . . , T vt be such connected maximal
subtrees in T formed by the vertices of Ball and call
their roots v1, v2, . . . , vt, respectively. Note that,
since the whole tree is rooted, a root is naturally
defined for each subtree.

Selection Process (refer to lines 5-31 in Algorithm 2).

� For each subtree T vj (where 1 ≤ j ≤ t), start from
the lowest-level vertex u. A lowest-level vertex of a
tree is a vertex that is farthest from the root.

� u must belong to either B1 or B2.

� If u ∈ B2:

– Remove u from B2, Ball, and T vj , as it must
be adjacent to a vertex in B1.

� If u ∈ B1:

– If u has a parent (say v) in T vj , add v to MB

and remove v along its children from B1, B2,
Ball, and T vj .

– If u has no parent in T vj , add u to MB and
remove it from B1, Ball, and T vj .

– If the grandparent of u (if it exists in T vj )
belongs to B1, move it from B1 to B2, and
update Ball accordingly.

� Repeat the Selection Process until T vj becomes
empty. Once T vj has no vertices, increase j ← j+1
and repeat the Selection Process until j = t.

We apply the algorithm to each block B and obtain sub-
sets MB . The final solution is M =

⋃
B∈T MB . We now

prove that M is not just selective, but also minimum.

Lemma 6 For any block B and any vertex u ∈ B1,
either u ∈ M or at least one adjacent vertex of u in
Ball must belong to M .

Proof. Let X be the set that contains u and all its
adjacent vertices in Ball. Suppose T vj is the subtree
that contains the vertices of X.
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Figure 4: Colors: blue= square, red= disk. r = v1 is the
root of the tree T . The blocks are B1 = {v1, . . . , v12},
B2 = {v13, . . . , v19}, B3 = {v20, . . . , v23}, B4 = {v24},
B5 = {v25}, B6 = {v26 , . . . , v32}. B1

1 = {v3, v5, v9,
v11, v12}, B2

1 = {v1, v2, v6, v8, v10}, B1
2 = {v13}, B2

2 =
{v14, v17}, B1

3 = {v20}, B2
3 = {v21}, B1

4 = {v24}, B2
4 =

∅, B1
5 = {v25}, B2

5 = ∅, B1
6 = {v26}, B2

6 = {v27, v30}.
T v1
1 = {v1, v2, v3, v5, v6, v12}, T v8

1 = {v8, v9, v10, v11},
T v13
2 = {v13, v14, v17}, T v20

3 = {v20, v21}, T v24
4 =

{v24}, T v25
5 = {v25}, T v26

6 = {v26, v27, v30}. MSS =
{v2, v1, v10, v13, v20, v24, v25, v26}. The vertices inside
small circles are in the minimum selective subset.

By the process described in Algorithm 2, after a finite
number of iterations, a vertex from X will become a
lowest-level vertex of T vj (since we delete vertices in
each iteration until the subtree becomes empty).

We analyze two cases:

� If u becomes a lowest-level vertex, then its parent
(if it exists in T vj ) must be included in MB because
u ∈ B1, meaning that an adjacent vertex of u from
Ball is included inMB . If the parent does not exist,
then u itself must be included in MB according to
Algorithm 2 as u ∈ B1.

� If a vertex v ∈ X \ {u} becomes a lowest-level ver-
tex, we consider two subcases:

– If v ∈ B1, then its parent must be u, as u is the
only adjacent vertex of v (as v is lowest-level
vertex), and u must be included in MB .

– If v ∈ B2, then v is removed from the tree.
In subsequent iterations, either u eventually
becomes a lowest-level vertex (in which case
we proceed as above), or one of its remaining
neighbors becomes a lowest-level vertex in B1,
again forcing u ∈MB . If all neighbors of u are
in B2 and get deleted, u itself becomes lowest-
level, completing the process.

Combining all these cases, we conclude that X ∩MB ̸=
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∅. Thus, either u ∈ M or at least one adjacent vertex
of u in Ball belongs to M . □

Lemma 7 ∗ M is a minimum selective subset of the
tree T .

Lemma 8 ∗ Algorithm 2 runs in O(n) time.

Remark. Since our algorithm is described for a single
block and applies uniformly to all blocks, the core idea
becomes clear: we aim to dominate all vertices in a
block that are adjacent to vertices in other blocks. This
naturally aligns with an MSOL-expressible formulation.
Therefore, the algorithm is not only applicable to trees
but also extends to graphs of constant treewidth.

6 Linear-time Algorithm of MSS in Unit Interval
Graphs

Let I = (V (I), E(I)) be a unit interval graph with
|V (I)| = n. Each unit interval in V (I) is on the x-
axis, which is treated as a vertex in I. Two vertices are
adjacent if their corresponding unit intervals intersect,
forming an edge between them. The set of all such edges
is denoted as E(I). Each interval has a left end and a
right end.

An interval v is called a left adjacent of an interval u if
the x-coordinate of the left endpoint of v is less than
that of u, and v intersects u. Similarly, an interval
v is called a right adjacent of an interval u if the x-
coordinate of the left endpoint of v is greater than that
of u, and v intersects u. The leftmost interval is the
one whose left endpoint has the smallest x-coordinate
among all adjacent intervals, while the rightmost inter-
val has the largest x-coordinate at its right endpoint.

Each interval is assigned a color from a set of c colors.
The Initialization step is the same as discussed in Sec-
tion 5. The other steps are also similar but with a little
change, which is as follows:

Unit Interval Subgraph Formation.

� Since Ball ⊆ B, each Ball induces one or more
connected induced unit interval subgraphs in I, and
each such graph consists of vertices of the same
color because Ball ⊆ B. We focus on these induced
connected maximal unit interval subgraphs.

� Let I1, I2, . . . , It be induced connected maximal
unit interval subgraphs in I formed by the vertices
of Ball.

Selection Process.

� For each unit interval subgraph Ij (where 1 ≤ j ≤
t), start from the leftmost interval u.

� u must belong to either B1 or B2.

� If u ∈ B2:

– Remove u from B2, Ball, and Ij , as it must
be adjacent to a interval in B1.

� If u ∈ B1:

– If the rightmost adjacent interval of u exists
(say v) in Ij , add v to MB and remove w along
with all of its left adjacent vertices from B1,
B2, Ball, and Ij . Also move all the right ad-
jacent intervals (if exists) of v from B1 to B2

and update the sets Ball accordingly.

– If u has no right adjacent interval in Ij , add u
to MB and remove it from B2, Ball and Ij .

� Repeat the Selection Process until Ij becomes
empty. Once Ij has no vertices, increment j ← j+1
and repeat the Selection Process until j = t.

Assume M =
⋃

B∈I MB . Since the above algorithm is
very similar to the algorithm for trees, Lemma 6 must
also hold for unit interval graphs.

Lemma 9 ∗ M is a minimum selective subset of the
interval graph I.

The proof of this lemma is quite similar to the proof of
the Lemma 7. The runtime is also the same as explained
in Lemma 8.

7 Remarks

As the MSS problem is NP-complete in planar graphs,
developing approximation algorithms and studying its
parameterized complexity (specifically, designing FPT
algorithms when the number of colors c is the parame-
ter) are important open problems. Additionally, design-
ing approximation algorithms and establishing hard-
ness results for other graph classes, such as circular-arc
graphs, present further promising directions for future
research.
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