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Motion Planning of Disk and Rectangular Robots

Eduard Eiben*

Abstract

We study the parameterized complexity of the motion
planning of geometric-shaped robots in the plane, where
the task is to move k € N robots from their starting to
their destination points without collisions.

We focus on disk and axis-aligned rectangular robots
and on rectilinear motion. We consider both types of
motions: coordinated (i.e., robots move in parallel) and
serial. We also consider two objective functions: the
total rectilinear length traveled and the total number of
moves.

We prove that, in the presence of (rectangular) ob-
stacles, the coordinated rectilinear motion planning of
rectangular robots with the target of minimizing the to-
tal number of moves, is W[1]-hard parameterized by the
number k of robots. This gives strong evidence that the
problem is unlikely to be solved in time f(k) - n®®),
for some computable function f, where n is the number
of bits that encode the coordinates of the robots and
obstacles, contrasting the recent result for the setting
of obstacle-free motion in the plane, which showed the
problem to be fixed-parameter tractable (FPT).

We then focus on the case of free motion in the plane,
and consider the rectilinear motion of axis-aligned rect-
angular robots, with the goal of minimizing their total
rectilinear travel length. We show that the restriction
in which we require each robot to travel along a shortest
rectilinear path, is NP-hard.

Finally, we consider the free rectilinear motion of con-
gruent disk robots in the plane.

We show that the problem is FPT parameterized by
k, for both target functions, if we restrict the motion of
the centers of the disks to a unit grid, a restriction that
has applications in real-world robotic problems.

1 Introduction

Motivation and Related Work. We investigate the
parameterized complexity of several motion planning
problems of disk robots and of axis-aligned rectangular
robots in the plane, where the parameter under consid-
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eration is the number of robots. In this setting, we are
given a set of k robots, each with a starting and ending
position, and the goal is to compute a schedule in which
each robot reaches its destination without colliding with
other robots, and while minimizing a certain objective
function. The two objective functions under considera-
tion are the total rectilinear length traveled by all the
robots in the schedule, and the total number of moves
in the schedule. We consider only rectilinear transla-
tion motion, that is, each move is a translation along
either a horizontal or vertical direction. We consider
two settings: the setting of free motion in the plane
(i.e., motion in the plane with no obstacles), and the
setting where rectangular obstacles may be present. We
also consider two types of motion: coordinated, where
robots may move in parallel, and serial, where robots
move one at a time. Most of the problems under con-
sideration are either NP-hard or PSPACE-hard.

Our work assumes a Turing machine model and that
the input length is the number of bits needed to repre-
sent the coordinates of the points defining the geometric
objects (i.e., robots/obstacles) in the problem instance.
Note that this number can be much larger than the pa-
rameter k. We believe that this model is more realistic
to the problems under consideration than the real RAM
model [35], which assumes that arithmetic operations
over the reals can be performed in constant time.

There has been an enormous body of work on geo-
metric motion planning problems, mainly focusing on
the feasibility (i.e., whether any schedule exists), dat-
ing back to the works of Schwartz and Sharir in the
1980s [32-34]. They showed that deciding the feasi-
bility of a problem instance for two disks in a region
bounded by n “walls” can be done in time O(n?) [32];
their result can be generalized to any number, k, of disks
to yield an O(n"®)-time algorithm, for some function
h of k. Ramanathan and Alagar [30] improved this to
O(n*), conjecturing that this running time is asymptot-
ically optimal. The feasibility of the coordinated motion
planning of rectangular robots confined to a bounding
box was shown to be PSPACE-hard [22,23], even for
congruent square robots [38]. The problem of moving
disks among polygonal obstacles in the plane was shown
to be strongly NP-hard [28].

More recently, there has been quite some work on the
continuous collision-free motion of a constant number of
rectangles in the plane, to optimize or approximate the
total Euclidean traveled length; we refer to [2,15,27] for
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some of the most recent works on this topic.

Dumitrescu and Jiang [12] studied the problem of
moving unit disks in an obstacle-free environment.
They consider two types of motion: translation and slid-
ing (a move along a continuous curve). In a single step,
a unit disk may move any distance either along a line
(translation) or a curve (sliding) provided that it does
not collide with another disk. They showed that de-
ciding whether the disks can reach their destinations
within ¢ € N moves is NP-hard, for either of the two
motion types. For more information, we refer to the sur-
vey [11].

Recently, there has been a surge of works on the
parametrized complexity of combinatorial variants of
coordinated motion planning problems (i.e., on grids
and graphs) [7,8,13,14,17,18]. Notably, minimizing the
total number of moves and the total travel length (re-
ferred to as the energy) for the classical coordinated mo-
tion planning problem on grids featured as the Sympo-
sium on Computational Geometry (SoCG 2021) Chal-
lenge problem [16], due to its applications in artificial
intelligence [4, 36, 39] and robotics [3,21,37].

Very recently, the parameterized complexity of trans-
lating axis-aligned rectangles in the free plane, with the
goal of minimizing the number of moves was studied by
Kanj and Parsa [24]. It was shown in [24] that the prob-
lem is FPT parameterized by the number of robots. The
parameterized complexity for other shapes — in particu-
lar congruent disks — and for environments with obsta-
cles were posed as open problems in [24]. Moreover, the
work in [24] focused on the total number of moves, and
did not consider the variants of the problems in which
the goal is to minimize the travel length/energy.

In this paper, we study the parameterized complexity
of these fundamental geometric motion planning prob-
lems, answering some of the open questions in [24], and
extending their work to the objective function of mini-
mizing the total travel length.

Contributions. We present both hardness and algo-
rithmic results for the motion planning problems of
disk robots and of axis-aligned rectangular robots in
the plane. Our main contributions are:

(i) We prove that, in the presence of rectangular ob-
stacles, the coordinated rectilinear motion planning of
rectangular axis-aligned robots with the target of mini-
mizing the total number of moves, is W[1]-hard param-
eterized by the number k of robots, giving strong evi-
dence that it is unlikely to be solved in time f(k)-n®®),
for some computable function f. This answers an open
question in [24], and contrasts the case of motion in the
free plane, where the problem is FPT [24].

We then consider free motion and show:

(ii) The restriction of the rectilinear motion of axis-
aligned rectangular robots, with the goal of minimizing

the rectilinear total travel length, to instances in which
each robot is required to travel along a shortest recti-
linear path (i.e., whose length is equal to the rectilinear
distance between the starting and ending positions of
the robot), is NP-hard. A byproduct of this hardness
result — among others that we show in this paper —is the
NP-hardness of a restriction of the classical coordinated
motion planning problem on full rectangular grids, to
instances where we require each robot to travel along
a shortest grid path between its starting and ending
position (i.e., whose length is equal to the Manhattan
distance between the starting and ending position of
the robot on the grid). We also describe an FPT algo-
rithm for the rectilinear motion of axis-aligned rectan-
gular robots, with the goal of minimizing the rectilinear
total travel length.

Finally, we consider the rectilinear free motion of con-
gruent disk robots in the plane.

(ili) We show that the problem is FPT parameterized
by k, for both target functions, the total number of
moves and the total rectilinear traveled length, if we re-
strict the motion of the centers of the disks to a unit
grid. This restriction models problems that arise in
real-world applications. For instance, the movement of
Amazon Kiva robots [29] is restricted to a floor grid.

2 Preliminaries and Problem Definition

The O*() notation hides a polynomial function in the
input size n, which is the length of the binary encoding
of the instance. We write [k] for the set {1,...,k}.

A parameterized problem @ is a subset of Q* x N,
where 2 is a fixed alphabet. FEach instance of @ is a
pair (I,k), where k € N is called the parameter. A
parameterized problem @ is fixed-parameter tractable
(FPT) [6,10], if there is an algorithm, called an FPT-
algorithm, that decides whether an input (I,k) is a
member of Q in time f(x) - [I|°V), where f is a com-
putable function and |I| is the input instance size.
The class FPT denotes the class of all fixed-parameter
tractable parameterized problems.

A parameterized problem @ is FPT-reducible to a pa-
rameterized problem @’ if there is an algorithm, called
an FPT-reduction, that transforms each instance (I, k)
of Q into an instance (I’,x') of Q" in time f(x)- |I|°M),
such that ' < g¢g(k) and (I,k) € @ if and only if
(I' k") € @', where f and g are computable func-
tions. Based on the notion of FPT-reducibility, a hi-
erarchy of parameterized complexity, the W-hierarchy
= U0 WIt], where W[t] € W[t + 1] for all ¢ > 0, has
been introduced, in which the 0-th level WI[0] is the class
FPT. The notion of hardness has been defined for each
level W([t] of the W-hierarchy for ¢t > 1 [6,10]. It is
commonly believed that W[1] # FPT (see [6,10]).
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Let R = {R; | i € [k]} be a set of robots. We as-
sume, both at the starting and ending positions, that
the robots are pairwise non-overlapping (in their inte-
riors). Depending on the problem under consideration,
the robots in R can either be all axis-aligned rectangu-
lar robots (not necessarily congruent), or all congruent
disk robots of fixed radius, but not a combination of
both. We will refer to a robot by its identifying name
(e.g., R;), which determines the location of its center
(either the center of the corresponding disk, or the cen-
ter of the corresponding rectangle — the intersection of
its two diagonals) in the schedule at any time step.

For two points p = (2p,yp) and ¢ = (x4,yq), the
rectilinear distance, or the Manhattan distance, between
p and ¢, is defined as d1(p, q) = |Tp — x4| + [yp — Yql-

A translation move, or a move, for R; € R w.r.t. a
direction ¥, is a translation of R; by a vector o - ¥
where @ > 0; we denote the move as (R;, o). For
a vector W, translate(R;, @) denotes the axis-aligned
rectangle resulting from translating R; by vector .

In this paper, we consider only axis-aligned trans-
lations, that is translations using the vectors in V =
{ﬁ_, ﬁ+, 7_, V+}, which are the negative and posi-
tive unit vectors of the z- and y-axis, respectively.

We consider two types of moves: serial and coordi-
nated, where the former type corresponds to the robots
moving one at a time (i.e., a robot must finish its move
before the next starts), and the latter type corresponds
to (possibly) multiple robots moving simultaneously.
Formally, a coordinated move is a move in which a sub-
set X of robots move simultaneously and at the same
speed. The move ends when all the robots in X reach
their desired locations during that move.

We now define collision for the two types of motion.

For a robot R; that is translated by a vector 7, we
say that R; collides with a stationary robot R; # R;, if
there exists 0 < # < 1 such that R; and translate(R;, -
) intersect in their interior. For two distinct robots
R; and R; that are simultaneously translated by vectors
7; and 5, respectively, we say that R; and R; collide
if there exists 0 < = < 1 such that translate(R;, = - 7;)
and translate(R;, x - T;) intersect in their interior.

A serial schedule (resp. coordinated schedule) S for
R is a sequence of axis-aligned collision-free serial
(resp. coordinated) moves such that after all the moves
in S, each R; ends at its final destination, for i € [k].
The length |S| of the schedule is the number of moves
in it, and the cost of S, denoted cost(S), is the to-
tal rectilinear distance traveled by all the (centers of
the) robots in S. More specifically, suppose that S =
{Ri,, 1)y, (Ri,,02)), for some £ € N, then |S| = ¢,
and cost(S) = Z§=1 [|77]]. (Note that each vector in
S either has horizontal or vertical orientation.) In this
paper, we study the following problems:

MOVES RECTANGLES MOTION PLANNING (Moves-

Rect-MP)

Given: A set of pairwise non-overlapping axis-aligned
rectangular robots R = {R; | ¢ € [k]} each given with
its starting and final positions; k£, A € N.

Question: Is there a schedule for R of length < \?

Let 1 = 0 be a constant.

GRID-MOVES p-Disks MoOTION PLANNING (Grid-
Moves-u-Disk-MP)

Given: A set of pairwise non-overlapping congruent
disk robots R = {R; | i € [k]} of radius p, each given
with its starting and final positions; an N x M unit grid
Q, where N, M e N; k, A e N.

Question: Is there a schedule for R of length at most
A in which the centers of the robots in R are confined
to (moving on) points of Q7

CosT RECTANGLES MOTION PLANNING (Cost-Rect-
MP)

Given: A set of pairwise non-overlapping axis-aligned
rectangular robots R = {R; | ¢ € [k]} each given with
its starting and final positions; k € N.

Question: Compute a schedule for R of minimum cost
(if one exists).

The GRID-COST u-Disks MOTION PLANNING (Grid-
Cost-p-Disk-MP) is defined analogously.

We note that the time complexity for solving the deci-
sion problems Moves-Rect-MP and Grid-Moves-u-Disk-
MP will be essentially the same (up to a polynomial fac-
tor) as that for solving its optimization version (where
we seek to minimize £), as we can binary-search for the
length of an optimal schedule.

We also study the RECTANGLES COORDINATED
MOTION PLANNING problem (Moves-Rect-CMP) and
Disks COORDINATED MOTION PLANNING problems
(Grid-Moves-u-Disks-CMP) and their cost counter-
parts the COoST RECTANGLES COORDINATED MOTION
PLANNING (Cost-Rect-CMP) and CosT Disks COOR-
DINATED MOTION PLANNING problems (Grid-Cost-p-
Disks-CMP), which are defined analogously with the
only difference being that the moves are coordinated.
More specifically, the schedule of the robots consists of
a sequence of coordinated collision-free moves.

We will use the following GRID-TILING problem and
its varian for our hardness results. GRID-TILING [6]:
Given k,n € N and k* nonempty sets S;;, i,j € [k],
where each S;; € [n] x [n], decide if we can choose a
pij = (zij,vij) € Sij, for each (4, 5) € [k] x [k], such that

o for each i € [k], yi1 = yi2 = -+ = yik, and
o for each j € [k], x1j = xoj = -+ = xp;.

That is, the y-coordinates of the p;;’s are the same in
any row and the z-coordinates are the same in any col-
umn. The INCREASING GRID-TILING problem is de-
fined similarly with the exception that we require the
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sequence of the z-coordinates of p1j, ..., pr; and the se-
quence of y-coordinates of p;1, . .., p;ir be non-decreasing
as opposed to being equal. Both versions of the problem
are NP-hard and W[1]-hard parameterized by & [6].

We conclude the preliminaries section by giving upper
bounds in k on the length (i.e., number of moves) of an
optimal schedule for feasible instances of the problems
under consideration. These upper bounds will be used
to obtain FPT algorithms for these problems.

Proposition 1 For any instance of COST-RECT-
MP, Grip-CosT-u-Disk-MP, CosT-RECT-CMP,
and GRID-COST-u-DiSks-CMP, there is an optimal
schedule for the instance of length at most 2k - 5F(k=1)

3 W][1]-hardness of Moves-Rect-CMP With Obsta-
cles

In this section, we consider the setting where, besides
the robots, the plane may contain stationary obstacles.
The obstacles are axis-aligned rectangles, and the colli-
sion between a robot and an obstacle is defined in the
natural way, treating the obstacle as a stationary robot.
We show that Moves-Rect-CMP with obstacles is W[1]-
hard, contrasting the FPT result for the same problem
in the free plane [25].

Theorem 2 MoOVES-RECT-CMP with rectangular ob-
stacles is W[1]-hard parameterized by the number k of
robots.

Proof. We reduce from an instance (k, n, (Si;); jex]) of
GRID-TILING. The produced instance of Moves-Rect-
CMP has 2k rectangular robots. There are k robots
Vi,..., Vi that we refer to as “vertical”, which will be
responsible for selecting the x-coordinate in each of &
columns of the k& x k grid from the GRID-TILING in-
stance. Each vertical robot has width 1 and height 2.
Similarly, there are k& “horizontal” robots Hy, ..., Hy re-
sponsible for selecting the y-coordinate in each of the k
rows of the k£ x k grid. Each horizontal robot has width
2 and height 1. The goal is now to create an envi-
ronment, using rectangular obstacles, that encodes the
GRID-TILING instance (see Figure 1). The upper bound

o) v) ©

Figure 1: A high-level overview of the constructed in-
stance of Moves-Rect-CMP in Theorem 2 starting from
the GRID-TILING instance with k = 3 and n = 5.

o o

Figure 2: An illustration of a vertical selection gadget.

on the total number of moves is equal to the minimum
number of moves each robot needs to reach its destina-
tion. The core of the reduction is a k x k grid (see the
bold-boundaried square in the center of Figure 1-(a)).
Each of the k? cells of this grid is further divided into
an n x n grid, whose cells represent the pairs in the S;.
We assume that the rows are numbered from top to bot-
tom and the columns from left to right; so the ¢-th row
from the top and the s-th column from the left repre-
sent the pair (s, t) and depending on whether (s,t) € S;;
or not, the cell contains an “allow-intersection gadget”
(Figure 1-(c) bottom) or a “forbid-intersection gadget”
(Figure 1-(c) top). To ensure that the horizontal robot
H; and the vertical robot V; enter the cell at the same
time, the starting position of H; (resp. V;) is shifted left
by i — 1 (resp. up by j — 1) auxiliary n x n grids, which
are outside of the central &k x k big grid, and hence robots
do not cross in these auxiliary grids (see Figure 1-(a)).
Each robot then needs to fully pass through 2k —1 many
n X n grids. Finally, robots start and end in a selection
gadget; see Figure 2 for the vertical selection gadget
(the horizontal selection gadget is analogous). The ver-
tical (horizontal) selection gadgets are the only places
that allow vertical (horizontal) robots to change their
horizontal (vertical) position. That is, a vertical robot
with height 2 and width 1 can enter each cell of the top
part of the vertical selection gadget from the left and
either leave it from the right after 4 moves, or from the
bottom after 5 moves. The bottom (top) of the i-th cell
in the top (bottom) part of the selection gadget con-
nects directly to an intersection gadget (one of the two
possible gadgets in Figure 1-(c)) in the first row and the
i-th column of an n x n grid. Each intersection gadget
can be passed by a vertical robot only from top to bot-
tom in 4 moves; a vertical robot does not fit through
the left /right entrance of the gadget. Similarly, a hori-
zontal robot can pass through an intersection gadget in
4 moves from left to right, but cannot enter/exit from
the top/bottom entrances. The above finishes the de-
scription of the gadgets. The total number of moves
is then set to 4(n + 1) + 4(2k — 1)n + 3. Each robot
needs 4(2k — 1)n moves to pass through (2k — 1)n many
intersection gadgets in 2k — 1 many n x n grids, and
4(n+1)+ 3 moves to pass through the selection gadget.
For the selection gadget, if the robot leaves from the s-
th cell, then it is easy to see from Figure 2 that it makes
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4s+1 moves in the top part (its (4s+2)-nd move counts
towards the cell it enters) and 4(n + 1 — s) 4+ 2 moves in
the bottom part of the selection gadget. Hence, robots
have to move towards their destinations in every step.
We now show that the original GRID-TILING instance
is equivalent to the produced instance of Moves-Rect-
CMP with obstacles and with A = 4(n+1)+4(2k—1)n+
3. We already argued that, in a schedule with an upper
bound of A on the total number of moves, each vertical
robot V; selects a single column in the selection gadgets
and then passes through all the intersection gadgets in
that column; this selection clearly corresponds to select-
ing the same z-coordinate in each cell of the j-th column

of the k x k grid (i.e., z1; = x9; = --- = ;). Similarly,
the horizontal robot H; picks a single row, effectively
ensuring that y;1 = y;2 = --- = y;x. To prove the cor-

rectness of the reduction, it suffices to show that H; can
pick row ¢ and V; column s if and only if (s, t) € S;;. For
that, let us assume that they pick ¢ and s, respectively,
and let us compute the move in which they enter the in-
tersection gadget representing the position (s,t) in the
n xn grid for S;;, where their two paths intersect. First,
for V; to select s, it does 4s + 1 moves in the selection
gadget. Afterwards, it does 4(j—1)n moves through the
auxiliary grids to enter the central k x k grid. There it
does 4-(i—1)-n moves to pass first the i —1 many n xn
grids and finally, it does 4-(t—1) moves to reach the top
entrance of the corresponding intersection gadget after
4(i+j—2)-n+4-(s+t) — 3 moves. Symmetrically, it
is easy to see that H; is at the left entrance of the inter-
section gadget after 4(i +j —2)-n+4-(s+1t) — 3 many
moves as well. It is easy to see that only the allow-
intersection gadget (Figure 1-(c) bottom) allows both
robots to enter at the same time. This is because verti-
cal robots can pass the crossing point in the same move
in which it enters the gadget, while for horizontal robots
it is their third move. On the other hand, in the forbid-
intersection gadget (Figure 1-(c¢) top) the crossing is in
the first move for both robots and at the same distance
from the entrance, and hence there will be a collision. It
follows that the instance of Moves-Rect-CMP with ob-
stacles admits a schedule with a total number of moves
at most A if and only if the instance of GRID-TILING is
a Yes-instance. o

4 On the Cost-Rect-MP Problem

It is not difficult to prove the NP-hardness of Cost-
Rect-MP via a reduction from the NP-hard (n? — 1)-
puzzle problem [31]. In this section, we present the
NP-hardness of Cost-Rect-MP restricted to instances in
which each robot must travel along a shortest rectilinear
path between its starting and ending positions, denoted
Shortest Cost-Rect-MP, which is an important restric-
tion in its own right, and implies the NP-hardness of an

important variant of the classical COORDINATED MO-
TION PLANNING ON GRIDS as well as other problems in
this paper:

Theorem 3 SHORTEST COST-RECT-MP is NP-hard.

We also give FPT algorithms for Cost-Rect-MP and
Cost-Rect-CMP, which follow exactly the algorithms
given in [24] for Moves-Rect-MP and Moves-Rect-CMP,
with a minor tweak of changing the linear program to
include an objective function for minimizing the cost,
which is a linear function. The running time of the
algorithms for Cost-Rect-MP and Cost-Rect-CMP is

2 2
O (5k . 8275 5K (gee [25]).

5 The FPT Algorithms for Grid-Moves-u-Disk-MP
and Grid-Cost-p-Disk-MP

The NP-hardness of Grid-Moves-u-Disk-MP  follows
from the NP-hardness of the restriction of the problem
to instances in which the disks are points (i.e., the radius
o of the disks is zero), proved in [5].

We describe the FPT algorithms for Grid-Moves-u-
Disk-MP and Grid-Cost-p-Disk-MP. The algorithms are
similar to those in the previous section, with the ex-
ception that we no longer can use linear programming
since the motion must be confined to the grid points
(as opposed to the whole plane). Instead, we use In-
teger Linear Programming (ILP), and that poses quite
some complications. To be able to use ILP and obtain
fixed-parameter tractability, we resort to Lenstra’s re-
sult [19,20,26], which requires that the number of vari-
ables in the ILP instance be upper bounded by a func-
tion of the parameter k. We describe the algorithm for
Grid-Moves-u-Disk-MP; the algorithm for Grid-Cost-pu-
Disk-MP is exactly the same except for adding a min-
imization objective linear function. Since the upper
bound on the running time in Lenstra’s result [19,20,26)
is not practical, we omit discussing the running time of
our algorithm and concern ourselves with showing that
it is FPT.

We start by guessing the number of moves, A, in an
optimal schedule, which was shown in Section 2 to be
upper bounded by a function of k. Next, the algorithm
guesses in each step which robot moves and its direc-
tion. We create ILP variables to encode the position of
each robot in each step, and the amplitude of the trans-
lation vector in each move. Since A and the number of
possible directions for each move are upper bounded by
a function of k and a constant, respectively, the num-
ber of ILP variables is upper bounded by a function of
k. What is left is showing that we can add linear con-
straints to stipulate that the moves are collision-free.

Let R be a disk robot whose center is at (xg,yo), and
suppose that in a certain move R is translated horizon-

tally by a vector @ of amplitude « in the direction ﬁJr;
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Figure 3: Left: The trace of disk Dy w.r.t. a translation
by a vector ¥ = (a,0). Right: The decomposition of
the trace into the rectangle P (red) and the two disks
DO and Dl.

other directions are analogous. At the translation, the
center of R is at the point (xg + «,y0). During the
motion of R, it covers a region of the plane, denoted
trace(R, ), depicted in Figure 3 (left). For any robot
R’ # R, located at point (a,b), R does not collide with
R’ during this translation iff the disk for R’ centered
at (a,b) does not intersect the interior of trace(R, 7).
Note that zq,yo, @, a,b are all variables in the ILP in-
stance. To stipulate this non-collision condition, we de-
compose trace(R, T') into three (non-disjoint) regions
(see the right side of Figure 3): the two disks Dy cen-
tered at (xzo,y0) and D; centered at (xo + «a,yo) of
radius p, and the interior of rectangle P whose two
diametrically-opposite corners/vertices are (zg,yo + )
and (zo + o,yo — p). Clearly, R’ does not intersect
trace(R, ) if and only if it does not intersect any of
these three regions. Consider first rectangle P. To stip-
ulate that R’ does not intersect the interior of P, we
first observe that if R’ intersects a vertical line segment
of P then it must intersect Dy or D;. Since we will later
add constraints to stipulate that R’ does not intersect
Dy or Dy, it suffices at this point to add constraints to
enforce that the interior of R’ does not intersect any of
the two horizontal line segments of P. We first make
a guess for if R’ intersects a vertical slab B defined by
P such that R’ intersects P in B iff it intersects a hori-
zontal segment. If not, it can make intersection with P
only around Dy and D1, in the other case we do as fol-
lows. Observe that if R’ does not intersect a horizontal
segment of P then (a,b) must be either above the top
horizontal segment of P, or below the bottom horizon-
tal segment of P, and in either case, at a distance of at
least p from the corresponding line. We guess which of
the two cases holds and add a linear constraint accord-
ingly. For example, if the guess is that (a, b) is above the
top horizontal line of P, we add the linear constraint:
b— p = yo + u, or equivalently, b —yg = 2u. The case is
similar for the other guess. Since we make two guesses
per rectangle R/, the number of guesses is FPT for this
part. Next, we encode non-collision between R’ and
Dy; the treatment is analogous for D;. Since R’ and
Dy are congruent disks of radius p, these disks collide if
and only if the distance between their centers is smaller
than 2u. Since p is a constant and the grid is a unit
grid, the number of grid points whose distance from the

2y

Figure 4: The grid points corresponding to the centers
of disks that collide with Dy.

center (xg,yo) of Dy is smaller than 2y is a function of
1, this is a constant, and this will be true even after
adding some points outside of the vertical slab near the
D;, and those points have coordinates that are linear in
xg and yg, and can be enumerated in constant time; see
Figure 4. Therefore, we add constraints to enforce that
the center (a,b) is not equal to any of these points. To
do so, note that two points are not equal if one of the
two coordinates of one of the two points is less than the
corresponding coordinate of the other point. For any of
the candidate points (¢, d), we guess which of the four
cases holds (i.e., which of the coordinates of (a,b) and
(¢, d) is less than the corresponding one) and add linear
constraints stipulating that. The number of guesses and
variables introduced in this part are FPT.

We constructed an ILP instance that can be solved
in FPT-time using the results in [19,20,26]. Since the
number of guesses is FPT, the above nondeterministic
algorithm can be simulated in deterministic FPT-time:

Theorem 4 The GRID-MOVES-u-DISK-MP and the
GRID-COST-u-DISK-MP problems are FPT parameter-
ized by k.

We can extend the above FPT algorithms to Grid-
Moves-p-Disks-CMP and Grid-Cost-p-Disks-CMP.

Theorem 5 The GRID-MOVES-u-DIisks-CMP  and
the GRID-COST-u-DIsSkS-CMP problems are FPT pa-
rameterized by k.

6 Concluding Remarks

A couple of natural open questions ensue from our work:

o Can we extend the W[1]-hardness result of Moves-
Rect-CMP where obstacles are present to Moves-
Rect-MP (i.e., where the motion is serial)? We note
that the coordinated motion was a very essential
ingredient in the W[1]-hardness proof for Moves-
Rect-CMP.

e Can we extend the FPT algorithms for disk robots
confined to a grid, given in this paper, to the case
where the disk robots move in the free plane?
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