315 CCCG 2025, Toronto, Canada, August 13-15, 2025
Optimal Delivery with a Faulty Drone
Jared Coleman* Evangelos Kranakis® Danny Krizanct Oscar Morales-Ponce’
Abstract any way of knowing if/where the drone will fail on the

We introduce and study a new cooperative delivery
problem inspired by drone-assisted package delivery.
We consider a scenario where a drone moving
in a straight line towards its destination loses
communication (at time ¢t = 0) with its central
command station. The command station cannot know
whether the drone’s system has wholly malfunctioned
or merely experienced a communications failure and
the drone is continuing towards its destination.
Consequently, a second helper drone with the same
speed is deployed from the command station to retrieve
the package and ensure successful delivery should the
first drone fail before reaching its destination. The
central question of this study is to find an algorithm for
this second drone with optimal competitive ratio with
respect to an omniscient drone that knows exactly if
and when the first drone will fail. We show that the
optimal algorithm depends on a surprisingly intricate
relationship between the relative initial positions of the
two drones and the destination.

1 Introduction

In recent years, drone-based package delivery has
emerged as a promising application of unmanned
aerial vehicle (UAV) technology. As these systems
are increasingly integrated into supply chain
infrastructures, it becomes imperative to design
algorithms for their robust operation amidst unexpected
complications. In this paper, we consider a complication
arising from faulty communication and propose a
solution for a cooperative delivery problem inspired by
this scenario.

Consider a situation where a drone, en route to
deliver a package to a given destination, unexpectedly
loses communication with its central command station.
This unexpected loss of contact leaves the command
station uncertain of whether the drone has suffered a
communications breakdown or complete system failure.
Furthermore, even if the issue is only with the
communications, the command station no longer has

*Loyola Marymount University, jared.coleman@lmu.edu
tCarleton University, kranakis@scs.carleton.ca
#Wesleyan University, dkrizanc@uwesleyan.edu
§California State University, Long
Oscar.MoralesPonce@csulb.edu

Beach,

rest of its way to the destination. In order to guarantee
the package gets delivered, the command station must
dispatch a second helper drone to retrieve the package
and complete the delivery. Our goal is to design an
online algorithm (one that cannot anticipate the true
fail location of the drone) that, given the drone’s last
known location, determines the best trajectory for the
second drone to find the package and complete the
delivery in minimal time.

Formally, let us denote the last known location of
the drone as the origin S = (0,0), the destination as
the point 7' = (1,0), and the location of the command
station as P = (z,y), where y > 0 (all without loss of
generality). The task is to identify an optimal trajectory
for the second drone that minimizes the competitive
ratio when compared to an optimal offline algorithm
that knows the exact failure location (t,0) of the first
drone in advance. We assume the first drone will fail at
some time 0 < ¢ < 1 (if it does not fail the delivery time
is optimal and the problem is uninteresting). Also, to
simplify notation, we only consider the package to be
delivered once the second drone and the package are
co-located at the destination (i.e., if ¢ = 1 and the
first drone fails at the destination, the package is only
delivered once the second drone reaches T'). For an
algorithm A(z,y), which defines the trajectory of the
second drone, let A(z,y,t) denote the delivery time of
algorithm A(z,y) for failure time ¢. Our goal is to find
an online algorithm (where ¢ is unknown) with minimum
competitive ratio with respect to the delivery time of an
optimal offline algorithm, Opt(z,y,t) (where ¢ is known
ahead of time). The competitive ratio for algorithm
A(z,y) for a given fail time ¢ can be written as

A(xv Y, t)
CRA(z,y) (1) = Opt(z,y,t)°

Then the competitive ratio of A(x,y) is
CRAw.y) = 5P CRA(a.y) (£).

To simplify notation we sometimes eliminate x and y
when they are clear from context and write algorithm
A(z,y) as A and its delivery time A(z,y,t) as A(¢).

1.1 Model and Notation

In this section, we describe the model and notation used
throughout the paper. We call the first drone, which is

37" Canadian Conference on Computational Geometry, 2025

316

initially carrying the package towards the destination,
the starter and the second drone, which completes the
delivery, the finisher. Without loss of generality, let
S = (0,0) be the initial location of the starter (the point
where it loses communication with the central command
station) and T' = (1,0) be the destination point on the
plane. The starter drone begins at point S carrying
the package and moves following a straight line directly
towards point T. At some unknown time ¢t < 1, the
starter will fail at position (¢,0).

The finisher drone starts at a point P = (z,y) on
the plane (i.e., at the command station). Without
loss of generality, we assume that y > 0 (all results
follow trivially by symmetry). We assume that both
drones have a speed of 1 and always move at this
speed. The finisher can start, stop, and change direction
instantaneously. The drones can communicate with
each other and exchange the package only when they are
co-located (face-to-face communication). The package
is considered to be delivered as soon as the finisher and
the package are co-located at T'.

Let D(c,r) (resp., D(c,r)) denote the open (resp.,
closed) disk with radius r and center (¢,0). We use
capital letters to denote points, |PQ| to denote the
Euclidean distance between points P and @, and PQ
to denote the line segment with endpoints P and Q). To
simplify notation we sometimes eliminate z and y when
they are clear from context, including when writing
derived quantities such as d, t;, and others that are
functions of (z,y).

1.2 Related Work

An important aspect of our problem is that the
starter agent experiences a failure. Many problems
with cooperative mobile agent experiencing failures
have been studied for a variety of basic problems in
distributed computing and in various domains. In
[11], the authors study the search problem on the line
by n mobile agents where f of the agents are faulty.
They present algorithms and their competitive ratios
for different values of f. In [13] the authors study the
evacuation problem on the disk by n agents, f of which
may be faulty. Competitive algorithms for gathering
have been proposed for n agents in a synchronous
system with less than (n — 1)/3 failures [1]. Optimal
algorithms and hardness results for the multi-agent
patrolling problem with faulty agents were presented
in [9]. Algorithms for flocking [16] and evacuation [10]
have also been studied in the context of faulty agents.

The problem studied in this paper has both search
and delivery components. Many search problems have
been studied for different domains and under different
models and assumptions (cf. the book [2]). The authors
of [6] consider the delivery problem for messages on the
line segment by multiple agents with different speeds

and propose competitively optimal algorithms. The
results of the previous study were also extended to the
plane [5]. Joint search and delivery problems, however,
have received much less attention in the literature.
The problem has also been studied for the single-
and two-agent case on the line [4]. On the systems
research side, many solutions for drone-assisted package
delivery have been proposed for different environments
and under different assumptions (we refer the reader
to the survey [14]). There are also numerous studies
on drone reliability. E.g., in [15] the authors consider
the reliability of drones in a delivery network so as
to minimize expected loss of demand assuming drone
failures follow an exponential distribution and study the
impact of including reliability in drone scheduling.

Most related but different to our delivery problem
are the papers [3] and [12] on package delivery. In the
former, the authors investigate delivery of one or two
packages of many autonomous mobile agents initially
located on distinct nodes of a weighted graph. In
the latter paper, they are concerned with delivering a
package from a source node to a destination node in a
graph using a set of drones and study the setting where
the movements of each drone are restricted to a certain
subgraph of the given graph. Note that both papers
above address the delivery problem in a graph setting.
To the best of our knowledge our paper is the first to
address delivery of a package in the plane in the presence
of a faulty drone.

1.3 Results

The main result we present is an optimal online
algorithm that depends only on the starting position of
the finisher (the central command station). Essentially,
the algorithm executes one of three candidate
algorithms depending on the finisher’s starting position.
This is depicted in Figure 1. If the finisher starts in the
diagonally striped region, then the optimal algorithm is
for the finisher to go to S (the origin) and then towards
the destination until finding the failed starter with the
object. If the finisher starts in the vertically striped
region, the optimal algorithm is for the finisher to go
first to T (the destination) and then toward S until
finding the failed starter with the object. Finally, if
the finisher starts in the horizontally striped region,
then the optimal algorithm is for the starter to go to
the point M = ((2*+y?) /(22),0) and then toward
S until finding the failed starter with the object. We
will show that the finisher is guaranteed to find the
starter on the interval [0, M]. While the behavior of
the finisher is simple, the separating curves that mark
the boundaries between these regions are non-linear and
quite surprising. Intricate details of these curves are
depicted in Figures 4, 5, and 6 (Section 4).

The rest of the paper is organized as follows.

317

CCCG 2025, Toronto, Canada, August 13-15, 2025

2.0

1.54

1.01

0.5 1

—-0.5 4

—-1.04

~1.5

-2.0 T T y T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0 2.5

Figure 1: The optimal algorithm with S = (0,0)
and T = (1,0) depends on the starting position of
the finisher. The striped regions depict the finisher
starting positions for which each of the three candidate
algorithms is optimal.

Section 2 introduces three candidate algorithms and
derives their competitive ratios as functions of the
command station’s starting position. Section 3 presents
a hybrid algorithm that selects the best candidate
based on the starting position (x,y); we prove this
hybrid is optimal. Section 4 examines how the starting
position influences the chosen candidate within the
hybrid. Finally, Section 5 summarizes the results and
outlines future directions. All proofs omitted due
to space constraints can be found in the full version
of the paper [8]. Some proofs rely on computations
performed in Mathematica, which are publicly available
on GitHub [7].

2 Candidate Algorithms

In this section, we present three algorithms and derive
their competitive ratios. In order to do so, we must
first consider the optimal offline algorithm, where the
fail location (¢,0) (at time ¢) is known ahead of time
and can be used to compute the optimal trajectory for
the finisher. Clearly in this case the finisher should
go directly from its starting location to the starter’s
fail location (¢,0) and then complete the delivery. The
delivery time then can be written:

Opt(t) = max{l, Vi —t)2+y2+1- t} .

Indeed, although the finisher moves directly to (¢,0), it
may have to wait for the starter to arrive (if necessary)
prior to completing the delivery task.

For the online algorithms, we start by reasoning about
what an optimal algorithm looks like. First, since the
starter must fail at some point on the line segment
ST, the finisher must eventually move from its initial
location to some point (m,0) on the segment (otherwise
it will never find the starter with the package). We use
this to prove the following intuitively obvious lemma:

Lemma 1 There exists an online algorithm with
optimal competitive ratio that involves the finisher
moving from its initial position P = (x,y) directly to
a point M = (m,0) € ST, past which, it remains within
the line segment ST .

Now, we present three candidate online algorithms:

1. Ay (Go To Last Point of Contact): The finisher
moves to the origin S = (0,0) and then towards
the destination until it finds the failed starter
(trajectory P — S — T).

2. A; (Go To Destination): The finisher goes first
to the destination 7' = (1,0) and then towards the
origin until it finds the failed starter (trajectory
P—-T—-S—-T).

3. Aq (Meet in the Middle): The finisher goes first
to the point (d,0), where d = (22 + 32)/(2z), and
then towards the origin until it finds the failed
starter (trajectory P — (d,0) — S — T). The
point (d, 0) is the unique point on the line segment
where the drones, both moving continuously, would
meet simultaneously if the starter does not fail
before time d.

Lemma 2 CR4,z,y) < CRA,(z,y) i and only if the
finisher starts within distance 1 of the destination (i.e.,
(z,y) € D(1,1)).

Lemma 2 essentially tells us that we need only
consider (among the candidate algorithms) Ag and Ay
when the finisher starts inside the disk and algorithms
Ap and A; when the finisher starts outside the disk.
Note that, when (z,y) is on the edge of the disk D(1,1)
(i.e., (x—1)2+y? =1), then d = 1 and so Ay and A;
are the same algorithm.

2.1 Go to Last Point of Contact

In this section, we derive the competitive ratio of
Algorithm Ag. Observe that, no matter the failure time
of the starter, the algorithm takes time 1 + \/x2 + 32
to deliver the message. This fact makes deriving the
algorithm’s competitive ratio rather simple.

37" Canadian Conference on Computational Geometry, 2025

318

Theorem 3 The competitive ratio of Ag is

1+ a2 +y2
max{l, V(e —1)2 —|—y2}

2.2 Go to Destination

CR4, =

We will now derive the competitive ratio of algorithm
A;. Unlike the delivery time of algorithm Ag, the
delivery time A;(t) = v/(x —1)2+y2 4+ 2(1 — t) (the
time for the agent to go to (1,0) and then backtrack
until it finds the package at (¢,0) before returning to
(1,0) to complete the delivery) depends greatly on the
fail time of the starter. Thus, to find the competitive
ratio of algorithm A;, we must find the worst-case fail
time for a given finisher starting position (z,y).

Theorem 4 Assume (z,y) ¢ D(1,1) (i.e.,
(x—1)2%2+y?> > 1). The competitive ratio of
Aj is CR 4, (max {t1,0}) where

1—-3y/4 r=1
ty = x2+y2+zl(1—x)—1—z1\/x(x+zl—2)+y2—21+1
0.W.
2(xz—1)
and z1 = \/(x — 1)2 4+ y2.
15[
1.0F
051
0.0
7075,
10}
71'57\ 1 L L L 1 U
-0.5 0.0 0.5 1.0 15 2.0 25

Figure 2: The worst-case fail time for the starter is 0
except in the gray shaded region (defined in the proof
of Theorem 4, which can be found in the full version of
the paper [8]). Recall that we only consider .4; when
the finisher starts outside of the Disk D(1,1).

There are essentially two cases that drive the
competitive ratio of Algorithm A;: when ¢; (from the
statement of Theorem 4) is less than or equal to 0 and
when it is greater than 0. Observe the value of ¢
is determined by the finisher’s starting position (z,y).

When ¢; < 0 (i.e., when the finisher starts outside of the
gray region shown in Figure 2), the competitive ratio is
driven by the case where the starter fails at the origin
(as soon as it loses contact with the command station).
When t; > 0, though, the worst-case scenario for A; is
when the starter fails at time ¢;.

2.3 Meet in the Middle

In this section, we derive the competitive ratio of
the last candidate algorithm, Ag, where the finisher
moves from its starting position to the point d =
(2% 4+ y?)/(2x), then towards the origin until it finds
the starter with the package before completing the
delivery. Recall from Lemma 2 that we need only
consider algorithm 4, inside the closed disk centered
at (1,0) with radius 1, namely D(1,1). Furthermore,
observe that on the edge of this disk d = 1 and so
algorithms Ay and A; are equal. By construction, then,
the finisher must find the starter between the origin and
the point (d,0) since (d,0) is the unique point on ST
such that the distance between the origin and (d,0) is
equal to the distance from (z,y) to 0 (i.e., it is the
point where the two drones would meet simultaneously
if the starter does not fail). It is easy to derive that

d = (22 4+ y2)/(2x) by solving 1/ (z — d)*> +y2 = d for

d using simple algebra. Thus, at time d, the finisher
reaches point (d,0) and the starter cannot have reached
any point further than (d,0).

D(1,1) (ie.,
The competitive ratio of

Theorem 5 Assume (z,y) €
(x—-1)2+y* < 1).
Ag is

(o) 1@y € DA/Z1/2)
2

otherwise.

Chas =V,
(o)

Similar to Algorithm 43, two cases drive Algorithm
Ag’s competitive ratio. The first is when ¢’ (from the
proof of Theorem 5) is less than 0, whenever the starting
position of the finisher is inside the disk D(1/2,1/2). In
this case, the worst-case failure time for the starter is
t = 0 (i.e., at the origin). When the finisher starts
outside of the disk D(1/2,1/2) (but inside the disk
D(1,1), of course, since we only consider Algorithm Ay
in this region), however, the worst-case failure time for
the starter is t = ¢’ (i.e., at location (t',0), see Figure 3).

3 A Hybrid Algorithm

For convenience, we summarize our main result by
introducing Algorithm 1, which simply executes the best
of Ap, A1, and Ay given a finisher starting position
(z,y), and prove it to be optimal.

319

CCCG 2025, Toronto, Canada, August 13-15, 2025

0.0 O% 1b WE 26
Figure 3: The worst-case fail time for the starter is 0
except in the gray shaded region, where it is ¢’ (from

the proof of Theorem 5). Recall that we only consider
Ag when the finisher starts inside the Disk D(1,1).

Algorithm 1 A hybrid algorithm

1: input: Finisher starting position (z,y)
2: if (z —1)2 +y* > 1 then
3: if CRAO(z,y) < CRAl(z,y) then
Execute Algorithm Ajg
else Execute Algorithm A,
else
if CR 4y (2,y) < CR 4 (2,y) then
Execute Algorithm Ajg
else Execute Algorithm Ay

In fact, we will show that Algorithm 1 is optimal by
proving that any other algorithm A, that moves first to
a position (a,0) such that 0 < a < 1 and a # d is always
worse than at least one of the candidate algorithms Ay,
A, or Ag. Recall from Lemma 1 that we do not need
to consider any other algorithms. Leveraging Lemma 2,
we know that we only need consider Ag and Ay when
the finisher’s starting position (z,y) is inside the disk

D(1,1) and algorithms Ay and .A; when it is outside the
disk. The following lemmas cover each of these cases.

Lemma 6 For any (x,y) € D(1,1),

min { CR,, CR4,} < CR4, for all a € ST.

Again, by Lemma 2, when the finisher starts outside
of the disk D(1, 1), we need only consider 4y and A;.

Lemma 7 For any (z,y) € D(1,1), either CR4, <
CR4, or CRy, < CRy4, for alla € ST.

Theorem 8 Algorithm 1 is optimal.

Proof. Follows directly from Lemmas 6 and 7. O

4 Discussion

We now examine in more detail the regions where each
candidate algorithm is optimal, as shown in Figures 4,
5, and 6. While the plots were generated numerically,
we are able to obtain a closed-form equation for one of
the separating curves.

TTTTTTT T T T T T T I T I T I I T TITTT
X3 Z,
oo Zy,
= Zy,
t1>0

= 4 V1-4x+2x2+4x3-3x*
wl 2x

ol

THe]

—1.0 A1 J L

—-1.54

-2.0 T ﬁ
.0

215 -10 -05 0

0.5 1.0 15 2.0 2.5
X

Figure 4: Plot showing which algorithm has the least
competitive ratio given finisher starting position (z,y).

0.7 4
0.6
0.54
0.4
0.39
0.2 AN
X

4
0.1*"

0.0 T T T
0.0 0.1 0.2 0.3

Figure 5: Region in Figure 4 bounded by dashed
rectangular box.

The competitive ratio of each of the candidate
algorithms, and therefore the hybrid algorithm, depends
on the starting position of the finisher. Let Z 4, denote
the set of points (z,y) such that Algorithm 1 executes

37" Canadian Conference on Computational Geometry, 2025

320

1.00

0.95 1

0.90 1

0.85 P

0.75 A

0.70 \

0.65 A

0.60 T f T T T T T
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 6: Region in Figure 4 bounded by solid-bordered
square box.

Ao (i.e., (CU — 1)2 + y2 > 1 and CRAO(x,y) < CRAl(x,y)a
orelse (z — 1) +4? < 1 and CR4,(2y) < CRA,(2,y))-
Similarly, let Z 4, denote the set of points (x,y) such
that Algorithm 1 executes A; (i.e., (x—1)>+%? > 1 and
CR 4y (z,y) > CR A, (2,y)) and Z4, the set of points (x,y)
such that Algorithm 1 executes Ay (i.e., (r—1)2+y? < 1
and CR4,(zy) > CRay(z,y))- In other words, for a
finisher starting position (z,y), the hybrid algorithm
executes algorithm Ag iff (z,y) € Z4,, A1 iff (z,y) €
Za,, and Ay iff (x,y) € Z4,. Observe the regions Z4,,
Z4,,and Z 4, are disjoint and their union comprises the
entire plane. Figure 4 depicts these regions.

Observe if (z,y) is inside the disk D(1,1), either
Ao(z,y) or Ai(z,y) has the least competitive ratio.
Otherwise, if (x,y) & D(1,1) either Ag(z,y) or Ay (x,v)
has the least competitive ratio. This is consistent,
of course, with Lemma 2. Inside each of these
regions, there are even more interesting things going
on. Examine the bang-bang curve (i.e., the separating
curve) between the regions Z 4, and Z 4, inside the disk
D(1/2,1/2). Recall that the worst-case fail time for
Aa(,y) is ta = S i (2,y) € D(1/2,1/2) and 0
otherwise. This is what causes the change of inflection
when the bang-bang curve leaves the disk D(1/2,1/2).

Now, look at the bang-bang curve between Z 4, and
Z 4, outside of the disk D(1,1). Recall the worst-case
fail time for A; (x,y) is

. 1—-3y/4 ife=1
e x2+y2+z12(&_ji))_l_z“/g otherwise

(where 21 = \/(z—1)24+y? abd b = z(z + 2, — 2) +
y? — 21 + 1) if t; > 0 and 0 otherwise. Outside of this
region, we can find a closed-form equation for the curve
separating Ay and A; since the competitive ratios for
CR4, and CR 4, are relatively simple. We can find
where the competitive ratios are equal for this case:

CR A, (2.)(0) = CRAg ()
Vie=1)2+y2+2 a24+y2+1
Vaz+y?+1 (z—1)2+¢2

By cross-multiplying the right-hand side and
simplifying, we obtain:

2z +1=2x\/x2+y2+ 22

From this, it is easy to arrive at:

2
y:i\/(ng;_xv e
X

_i\/1—4x+2x2+4x3—3x4

N 2z
Unfortunately, this is the only bang-bang curve for
which we were able to find a closed form equation.
Observe in Figure 6 how the bang-bang curve diverges
from the curve given by Equation (4.1) when ¢; > 0
(inside the shaded region).

(4.1)

5 Conclusion

In this paper, we present a competitively optimal
algorithm for two-agent delivery in the plane with a
single faulty agent. We show that the competitive ratio
of the algorithm depends on the relative positioning of
the two agents and the destination. An upper bound
of 3 on the competitive ratio over all points (z,y) is
straightforward to prove (both CR 4, (z,) and CR 4, (2.4
have a maximum of 3). Numerical calculations indicate
the maximum competitive ratio is given by the case
where CR 4y(z,y) = CRA (2,y) = CRAy(2,y), Which is
approximately 1.74197 at x ~ 0.275257,y ~ 0.689019.
The results presented in this paper introduce a number
of interesting questions and avenues for future work.
First, we assume the starter can only move directly
toward the destination. It would be interesting to
see how the competitive ratio changes if the starter
can move in any direction (e.g., toward the finisher).
Second, we could remove the assumption that the
starter /finisher move at the same speed. In this case,
the finisher might be able to deliver the package faster
by participating even if the starter does not fail. We
could also extend the problem to consider multiple
(potentially faulty) agents (i.e., what happens if the
finisher also fails?). Finally, another interesting open
problem arises when the starter’s trajectory from the
source to the target is on a curve other than a line
segment.

321 CCCG 2025, Toronto, Canada, August 13-15, 2025
References Communication Complezity - 24th International
) Colloquium, SIROCCO 2017, Porquerolles,

[1] N. Agmon and D. Peleg. Fault-tolerant gathering France, June 19-22, 2017, Revised Selected
algorithms for autonomous mobile robots. SIAM Papers, volume 10641 of Lecture Notes in
J. Comput., 36(1):56-82, 2006. Computer Science, pages 158-173. Springer, 2017.

(2] S. Alpern and S. Gal. The theory of search games [11] J. Czyzowicz, E. Kranakis, D. Krizanc,
and rendezvous, volume 55 of International series L. Narayanan, and J. Opatrny. Search on a
in operations research and management science. line with faulty robots. Distributed Comput.,
Kluwer, 2003. 32(6):493-504, 2019.

[3] I A Carvalho, T ErlebaCh, and K Papadopoulos. [12] T Erlebach7 K]'_luo7 and F C R Spleksma
On the fast delivery problem with one or two Package delivery using drones with restricted
packages. J. Comput. Syst. Sci., 115:246-263, 2021. movement areas. In 33rd International Symposium

[4] J. Coleman, L. Cheng, and B. Krishnamachari. on Algorithms and Computation, ISAAC 2022,

. December 19-21, 2022, Seoul, Korea, volume 248
Search and rescue on the line. In Structural
. S . of LIPIcs, pages 49:1-49:16. Schloss Dagstuhl -
Information and Communication Complexity, LeibnizZentrum fiir Informatik. 2022
pages 297-316, Cham, 2023. Springer Nature ’ '
Switzerland. [13] K. Georgiou, E. Kranakis, N. Leonardos,
[6] J. Coleman, E. Kranakis, D. Krizanc, and A Pagourtzis, and. I Papaioannou. Optimal
. . circle search despite the presence of faulty
O. Morales-Ponce. Message delivery in the plane .
. . o robots. In Algosensors 2019, Mumnich, Germany,
by robots with different speeds. In Stabilization,
. . September 12-13, 2019, volume 11931 of LNCS,
Safety, and Security of Distributed Systems - aces 192-205. Sprineer. 2019
23rd International Symposium, SSS 2021, Virtual bag - PIget, '
Event, November 17-20, 2021, Proceedings, volume [14] A. M. Raivi, S. M. A. Huda, M. M. Alam, and
13046 of Lecture Notes in Computer Science, pages S. Moh. Drone routing for drone-based delivery
305-319. Springer, 2021. systems: A review of trajectory planning, charging,

6] J. Coleman, B. Kranakis, D. Krizanc, and security. Sensors, 23(3):1463, 2023.
and O. Morales-Ponce. The pony express [15] M. Torabbeigi, G. J. Lim, and S. J. Kim. Drone
communication problem. In Combinatorial delivery schedule optimization considering the
Algorithms - 32nd International ~ Workshop, reliability of drones. In 2018 International
IWOCA 2021, Ottawa, ON, Canada, July 5-7, Conference on Unmanned Aircraft Systems
2021, Proceedings, volume 12757 of Lecture Notes (ICUAS), pages 1048-1053. IEEE, 2018.
in Computer Science, pages 208-222. Springer,

2021. [16] Y. Yang, S. Souissi, X. Défago, and M. Takizawa.
Fault-tolerant flocking for a group of autonomous

[7] J. Coleman, D. Krizanc, E. Kranakis, and mobile robots. J. Syst. Softw., 84(1):29-36, 2011.
O. Morales-Ponce. Mathematica code for
faulty delivery problem. https://github.
com/jaredraycoleman/faulty_delivery, 2025.

Accessed: 2025-06-20.
[8] J. R. Coleman, D. Krizanc, E. Kranakis, and
O. Morales-Ponce. Optimal delivery with a faulty
drone. CoRR, abs/2404.17711, 2024.
9] J. Czyzowicz, L. Gasieniec, A. Kosowski,
E. Kranakis, D. Krizanc, and N. Taleb. When
patrolmen become corrupted: Monitoring a
graph using faulty mobile robots. Algorithmica,
79(3):925-940, 2017.

[10] J. Czyzowicz, K. Georgiou, M. Godon, E. Kranakis,

D. Krizanc, W. Rytter, and M. Wlodarczyk.
Evacuation from a disc in the presence of a
faulty robot. In Structural Information and

https://github.com/jaredraycoleman/faulty_delivery
https://github.com/jaredraycoleman/faulty_delivery

	Introduction
	Model and Notation
	Related Work
	Results

	Candidate Algorithms
	Go to Last Point of Contact
	Go to Destination
	Meet in the Middle

	A Hybrid Algorithm
	Discussion
	Conclusion

