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Efficient Reconfiguration of Tile Arrangements by a Single Active Robot

Séndor P. Feketet
Christian Rieck?

Aaron T. Becker*

Abstract

We consider the problem of reconfiguring a two-
dimensional connected grid arrangement of passive
building blocks from a start configuration to a goal con-
figuration, using a single active robot that can move on
the tiles, remove individual tiles from a given location
and physically move them to a new position by walking
on the remaining configuration. The objective is to de-
termine a schedule that minimizes the overall makespan,
while keeping the tile configuration connected. We pro-
vide both negative and positive results. (1) We gen-
eralize the problem by introducing weighted movement
costs, which can vary depending on whether tiles are
carried or not, and prove that this variant is NP-hard.
(2) We give a polynomial-time constant-factor approxi-
mation algorithm for the case of disjoint start and target
bounding boxes, which additionally yields optimal carry
distance for 2-scaled instances.

1 Introduction

Building and modifying structures consisting of many
basic components is an important objective, both in
fundamental theory and in a spectrum of practical
settings. Transforming such structures with the help
of autonomous robots is particularly relevant in very
large [17] and very small dimensions [41] that are hard to
access for direct human manipulation, e.g., in extrater-
restrial space [10,34] or in microscopic environments [7].
This gives rise to the natural algorithmic problem of
rearranging a given start configuration of many passive
objects by a small set of active agents to a desired target
configuration. Performing such reconfiguration at scale
faces a number of critical challenges, including (i) the
cost and weight of materials, (ii) the potentially disas-
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Figure 1: A BILL-E robot moves on a configuration of
light-weight material and relocate individual voxels for
overall reconfiguration. Photo adapted from [32].

trous accumulation of errors, (iii) the development of
simple yet resilient agents to carry out the active role,
and (iv) achieving overall feasibility and efficiency.

In recent years, significant advances have been made
to deal with these difficulties. Macroscopically, ultra-
light and scalable composite lattice materials [13,28,29]
tackle the first problem, making it possible to construct
modular, reconfigurable structures with platforms such
as NASA’s BILL-E and ARMADAS [28,31, 33]; the un-
derlying self-adjusting lattice also resolves the issues of
accuracy and error correction (ii), allowing it to focus on
discrete, combinatorial structures, consisting of regular
tiles (in two dimensions) or voxels (in three dimensions).
A further step has been the development of simple au-
tonomous robots [11,32] that can be used to carry out
complex tasks (iii), as shown in Figure 1: The robot can
move on the tile arrangement, remove individual tiles
and physically relocate them to a new position by walk-
ing on the remaining configuration, which needs to re-
main connected at all times. At microscopic scales, ad-
vances in micro- and nanobots [39,40] offer novel ways to
(re)configure objects and mechanisms, e.g., assembling
specific structures or gathering in designated locations
for tasks like targeted drug delivery [9,35].

In this paper, we deal with challenge (iv): How can we
use such a robot to transform a given start configuration
into a desired goal arrangement, as quickly as possible?

1.1 Our contributions

We investigate the problem of finding minimum cost re-
configuration schedules for a single active robot operat-
ing on a (potentially large) number of tiles, and give the
following results. Details for statements marked by (x)
can be found in the full version of our paper [8].
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(1) We present a generalized version of the problem,
parameterized by movement costs, which can vary
depending on whether tiles are carried or not, and
show that this is NP-hard.

(2) We give a polynomial-time constant-factor approx-
imation algorithm for the case of disjoint start and
target bounding boxes. Our approach further yields
optimal carry distance for 2-scaled instances.

1.2 Related work

Recently, the authors of [24,25] showed that computing
optimal schedules for BILL-E bots, see [31] and Fig-
ure 1, is NP-hard in unweighted models. They designed
a heuristic approach that exploits rapidly exploring ran-
dom trees (RRT) and a time-dependent variant of the
A* algorithm, as well as target swapping heuristics to
reduce the overall distance traveled for multiple robots.
The authors of [12] present an algorithm for computing
feasible build orders that adhere to three-dimensional
tile placement constraints in the ARMADAS project.

A different context for reconfiguration arises from
programmable matter [15]. Here, finite automata are
capable of building bounding boxes of tiles around poly-
ominoes, as well as scale and rotate them while main-
taining connectivity at all times [20,38]. On hexagonal
grids, finite automata can build and recognize simple
shapes such as triangles or parallelograms [26, 27, 30)
as well as more complicated shapes if they are able to
recognize nodes that belong to the target shape [23].

When considering active matter, arrangements com-
posed of self-moving objects (or agents), numerous mod-
els exist [5,6,14,18,37]. For example, in the sliding cube
model (or the sliding square model in two dimensions)
first introduced in 2003 [21,22], agents are allowed to
slide along other, temporarily static, agents for recon-
figuration, but must maintain connectivity throughout.
The authors of [3] show that sequential reconfigura-
tion in two dimensions is always possible, but deciding
the minimal makespan is NP-complete. Recent work
presents similar results for the three-dimensional set-
ting [1,36], as well as parallel movement [4].

In a relaxed model, the authors of [18,19] show
that parallel connected reconfiguration of swarms of (la-
beled) agents is NP-complete, even for makespan 2, and
present algorithms for schedules with constant stretch;
the ratio of a schedule’s makespan to the individual
maximum minimum distance between start and target.

1.3 Preliminaries

For the following, we refer to Figure 2. We are given
a fixed set of n indistinguishable square tile modules
located at discrete, unique positions (z,y) in the infinite
integer grid Z2. If their positions induce a connected

subgraph of the grid, where two positions are connected
if either their z- or y-coordinate differs by 1, we say that
the tiles form a connected configuration or polyomino.
Let C(n) refer to the set of all polyominoes of n tiles.
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(a) Left to right: The cardinal directions, a robot without
and with payload, a tile, and tiles that only exist in either
the start or the target configuration, respectively.

- -

(b) A schedule for the instance on the left. The robot moves
on tiles, picking up and dropping off adjacent tiles.

Figure 2: A brief overview of legal operations.

Consider a robot that occupies a single tile at any
given time. In discrete time steps, the robot can either
move to an adjacent tile, pick up a tile from an adjacent
position (if it is not already carrying one), or place a
carried tile at an adjacent unoccupied position. Tiles
can be picked up only if connectivity is preserved.

We use cardinal directions; the unit vectors (1, 0) and
(0,1) correspond to east and north, respectively. Natu-
rally, their opposing vectors extend west and south.

A schedule S is a finite, connectivity-preserving se-
quence of operations to be performed by the robot. As
the robot’s motion is restricted to movements on the
polyomino, we refer to distances it travels as geodesic
distances. Let dg(S) denote the carry distance, which
is the number of robot moves while carrying a tile (i.e.,
the sum of geodesic distances between consecutive pick-
ups and drop-offs), plus the number of all pickups and
drop-offs in S. Accounting for the remaining moves
without carrying a tile, the empty distance dg(S) is the
sum of geodesic distances between drop-offs and pick-
ups in S. For C,, C, € C(n), we say that S is a schedule
for Cy, = C; exactly if it transforms C| into C;.

Problem statement. We consider SINGLE ROBOT RE-
CONFIGURATION: Given configurations Cy,C; € C(n)
and a rational weight factor A € [0,1], determine a
schedule S for C; = C; that minimizes the weighted
makespan |S| == X-dg(S)+dc(S). We refer to the min-
imum weighted makespan for a given instance as OPT.

2 Computational complexity of the problem

We investigate the computational complexity of the de-
cision variant of the reconfiguration problem. In par-
ticular, we prove that the problem is NP-hard for any
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rational A € [0,1]. This generalizes the previous result
from [25], which handles the case of A = 1.

Theorem 1 SINGLE ROBOT RECONFIGURATION is
NP-hard for any rational \.

We distinguish between the two cases of (1) A € (0, 1]
and (2) A = 0. For (1), we modify the construction
from [25] to yield a slightly stronger statement, reducing
from the HAMILTONIAN PATH problem in grid graphs.
The primary result of our reduction is the following.

Lemma 2 (%) SINGLE ROBOT RECONFIGURATION is
NP-hard for X € (0, 1].

Our modified construction further implies that it is
NP-hard to decide the minimal number of pickup/drop-
off operations in an optimal schedule with A € (0, 1].

Corollary 3 Given two configurations Cy,C, € C(n)
and an integer k € N, it is NP-hard to decide whether
there exists an optimal schedule C'y = C, with at most k
pickup (at most k drop-off) operations, if A € (0, 1].

The reduction for (2) is significantly more involved:
As A = 0, the robot is effectively allowed to “teleport”
across the configuration, albeit only without cargo.

Lemma 4 (*) SINGLE ROBOT RECONFIGURATION is
NP-hard for A = 0.

We reduce from PLANAR MONOTONE 3SAT [16], follow-
ing ideas by the authors of [3] for the sequential sliding
square problem. This variant of the SAT problem asks
whether a given Boolean formula ¢ in conjunctive nor-
mal form is satisfiable, given the following properties:
First, each clause consists of at most 3 literals, all ei-
ther positive or negative. Second, the clause-variable
incidence graph G, admits a plane drawing in which
variables are placed on the z-axis, and all positive (resp.,
negative) clauses are located in the same half-plane,
such that edges do not cross the z-axis, see Figure 3.
We assume, without loss of generality, that each clause
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Figure 3: The embedded clause-variable incidence graph
of p = (z1 Vay Vas) A(x Vay) A(@2 VT3V Ty).

contains exactly three literals; otherwise, we extend a
shorter clause with a redundant copy of one of the ex-
isting literals, e.g., (z; V x4) becomes (z, V x4 V x4).
Our reduction maps from an instance ¢ of PLA-
NAR MONOTONE 3SAT to an instance Z, of SINGLE

ROBOT RECONFIGURATION such that the minimal fea-
sible makespan Z, is determined by whether ¢ is satis-
fiable. Recall that, due to A = 0, we only account for
carry distance. Consider an embedding of the clause-
variable incidence graph as above, where C and V refer
to the m clauses and n variables of ¢, respectively.

We construct Z, as follows. A wariable gadget is
placed on the z-axis for each x; € V, and connected
along the axis in a straight line. Intuitively, the vari-
able gadget asks the robot to move a specific tile west
along one of two feasible paths, which encode a value as-
signment. These paths are highlighted in red and blue
in Figure 4, each of length exactly 9(6(z;) + 1), where
0(z;) refers to the degree of z; in the clause-variable in-
cidence graph. Both paths require the robot to place
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Figure 4: The variable gadget; the middle segments are
repeated to match the incident clauses.

its payload into the highlighted gaps to minimize the
makespan, stepping over it before picking up again. We
further add one clause gadget per clause, connected to
its incident variables. These are effectively combs with
three or four prongs, connected to a variable gadget by
the rightmost one, see Figure 5. The remaining prongs

Figure 5: A clause gadget and its variable attachment.

each terminate at a position diagonally adjacent to the
variable gadget of a corresponding literal. To solve the
gadget, the rightmost prong must be temporarily dis-
connected from the comb, meaning that another prong
must have been connected to a variable gadget first.
Such a link can be established without extra cost if one
of the adjacent variable gadgets has a matching Boolean
value, allowing us to use its payload to temporarily close
one of the gaps marked by circles in Figure 4.

We can show that a weighted makespan of 29m + 9n
can be achieved exactly if ¢ is satisfiable; recall that
m and n denote the number of clauses and variables
in ¢, respectively. Theorem 1 is then simply the union
of Lemmas 2 and 4.
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3 Constant-factor approximation for 2-scaled in-
stances

We now turn to the case in which the configura-
tions have disjoint bounding bozes, i.e., there exists an
axis-parallel bisector that separates the configurations.
Without loss of generality, let this bisector be horizontal
such that the target configuration lies south. We present
a constant-factor approximation algorithm. For the re-
mainder of this section, we additionally impose the con-
straint that both the start and target configurations are
2-scaled, i.e., they consist of 2 x 2-squares of tiles aligned
with a corresponding grid. In Section 4, we extend our
result to non-scaled configurations.

Theorem 5 For any A € [0,1], there exists a con-
stant ¢ such that for any pair of 2-scaled configurations
C,,C, € C(n) with disjoint bounding boxes, we can ef-
ficiently compute a schedule for Cy = C, with weighted
makespan at most ¢+ OPT.

Our algorithm utilizes histograms as intermediate
configurations. A histogram consists of a base strip of
unit height (a single tile, also when 2-scaled) and unit
width columns attached orthogonally to its base. The
direction of its columns determines the orientation of a
histogram, e.g., H, in Figure 6 is north-facing.

Phase (Ill)

Figure 6: An example for a start and target configura-
tion C,, Cy, the intermediate histograms H,, H, with a
shared baseline, and the horizontally translated H. that
shares a tile with H,. If H, and H, overlap, H. :== H,.

As illustrated in Figure 6, we proceed in three phases.

Phase (). Iteratively move components of C, south
until it forms a north-facing histogram H such that its
base shares its y-coordinate with a module of C;.

Phase (IlI). Translate H, to overlap with the target
bounding box and transform it into a specific south-
facing histogram H,; within the bounding box of C,.

Phase (Ill). Finally, apply Phase (1) in reverse to ob-
tain C; from H;.

We reduce this to two subroutines: Transforming any
2-scaled configuration into a histogram and reconfigur-
ing any two histograms into one another. Note that
while the respectively obtained histograms are 2-scaled
when the initial configurations are, the reconfiguration
between two opposite-facing histograms actually does
not depend on this condition. In fact, the same reconfig-
uration routines remain valid even when the histograms
involved are not 2-scaled, highlighting the broader ap-
plicability of our method.

3.1 Preliminaries for the algorithm

For our algorithm, we use the following terms. Given
two configurations Cy, C; € C(n), the weighted bipartite
graph Go_ o, = (C5 U Cy, Cy x Cy, Ly) assigns each edge
a weight equal to the L-distance between its end points.

A perfect matching M in G¢_ ¢, is a subset of edges
such that every vertex is incident to exactly one of
them; its weight w(M) is defined as the sum of its edge
weights. By definition, there exists at least one such
matching in G¢_ ¢,. Furthermore, a minimum weight
perfect matching (MWPM) is a perfect matching M of
minimum weight o(Cy, Cy) = w(M), which is a natural
lower bound on the necessary carry distance, i.e., OPT.

Let S be any schedule for C; = C;. Then S induces a
perfect matching in G¢_¢,, as it moves every tile of C,
to a distinct position of C,. We say that S has optimal
carry distance exactly if do(S) = o(Cy, Cy).

3.2 Phase (l): Transforming into a histogram

We proceed by constructing a histogram from an arbi-
trary 2-scaled configuration by moving tiles strictly in
one cardinal direction.

Lemma 6 (x) Let C, € C(n) be a 2-scaled polyomino
and let H, be a histogram that can be created from Cg by
moving tiles in only one cardinal direction. We can ef-
ficiently compute a schedule with optimal carry distance
and total makespan O(n + o(Cy, H,)) for C; = H,.

To achieve this, we iteratively move sets of tiles in
the target direction by two units, until the histogram
is constructed. We give a high-level explanation of our
approach by example of a north-facing histogram, as
depicted in Figure 7.

Let P be any intermediate 2-scaled polyomino ob-
tained by moving tiles south while realizing Cy = H,.
Let H be the set of maximal vertical strips of tiles that
contain a base tile in H,, i.e., all tiles that do not need
to be moved further south. We define the free compo-
nents of P as the set of connected components in P\ H.
By definition, these exist exactly if P is not equivalent
to Hg, and once a tile in P becomes part of H, it is not
moved again until H, is obtained.
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Figure 7: The figure visualizes Lemma 6. Left: A walk across all tiles (red), the set H (gray) and two free compo-
nents (yellow). Right: Based on the walk, free components are iteratively moved south to reach a histogram shape.
The free component that is going to be translated next is highlighted in green.

We compute a walk that covers the polyomino, i.e., a
path that is allowed to traverse edges multiple times and
visits each vertex at least once, by depth-first traversal
on an arbitrary spanning tree of P. The robot then
continuously follows this walk, iteratively moving free
components south and updating its path accordingly:
Whenever it enters a free component F' of P, it per-
forms a subroutine with makespan O(|F|) that moves F
south by two units. Adjusting the walk afterward may
increase its length by O(|F|) units per free component.

Upon completion of this algorithm, we can bound
both the total time spent performing the subroutine and
the additional cost incurred by extending the walk by
O(o(C4, Hy)). Taking into account the initial length of
the walk, the resulting makespan is O(n + o(Cy, H,)).
The subroutine for the translation of free components
can be stated as follows.

Lemma 7 We can efficiently compute a schedule of
makespan O(|F|) to translate any free component F of a
2-scaled polyomino in the target direction by two units.

Proof. Without loss of generality, let the target direc-
tion be south. We show how to translate F' south by
one unit without losing connectivity, which we do twice.

We follow a bounded-length walk across F' that vis-
its exclusively tiles with a tile neighbor in northern di-
rection. Such a walk can be computed by depth-first
traversal of F. Whenever the robot enters a maximal
vertical strip of F' for the first time, it picks up the
northernmost tile, places it at the first unoccupied po-
sition to its south, and continues its traversal.

As each strip is handled exactly once, the total move-
ment cost on vertical strips for carrying tiles and return-
ing to the pre-pickup position is bounded by O(|F]).
This bound also holds for the length of the walk. O

Applying Lemma 7 to the entire polyomino, rather
than restricting it to a free component, allows the trans-
lation of the polyomino in any direction with asymptot-
ically optimal makespan.

Corollary 8 Any 2-scaled polyomino can be translated
by k wunits in any cardinal direction by a schedule of
weighted makespan O(n - k).

3.3 Phase (ll): Reconfiguring histograms

It remains to show how to transform one histogram into
the other. By the assumption of the existence of a
horizontal bisector between the bounding boxes of C|
and Cy, the histogram H, is north-facing, whereas H,
is south-facing. The bounding box of C| is vertically
extended to share exactly one y-coordinate with the
bounding box of C,, and this is where both histogram
bases are placed; see Figure 6 for an illustration. Note
that the histograms may not yet overlap. However, by
Corollary 8, the tiles in H, can be moved toward H,
with asymptotically optimal makespan until both his-
togram bases share a tile.

Lemma 9 (x) Let H, and H; be opposite-facing his-
tograms that share a base tile. We can efficiently
compute a schedule of makespan O(n + o(Hg, H,)) for
H, = H, with optimal carry distance.

As illustrated on the left side of Figure 8, we order
all tiles to be moved, as well as all positions to be pop-
ulated, from west to east and north to south. By that,
iteratively moving the first remaining tile from H, \ H,
to H, \ H, yields a schedule with the desired properties.
The right side of Figure 8 depicts a special case in which
the westernmost positions in H; \ H, cannot be reached
initially. This case requires a preprocessing in which the
baseline is first extended to the west.

Figure 8: Left: Ordering of tile moves for H, = H,.
Right: If the westernmost unoccupied position in H, is
unreachable, the base may need to be extended first.

3.4 Correctness of the algorithm

In the previous sections, we presented schedules for each
phase of the overall algorithm. We will now leverage
these insights to prove the main result of this section,
restated here.
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Theorem 5 For any A € [0,1], there exists a con-
stant ¢ such that for any pair of 2-scaled configurations
C,,C, € C(n) with disjoint bounding bozes, we can ef-
ficiently compute a schedule for Cy = C, with weighted
makespan at most ¢ OPT.

Proof. By Lemmas 6 and 9, the makespan of the three
phases is bounded by, respectively,

O(TL + U(Os’ Hs))’ O(n + U(Hsa Ht))v O(TL + U(Hta Ct))a

which we now bound by O(c(C,, C;)), proving asymp-
totic optimality for Cy = C;.

Clearly, n € O(c(C4, C,)), as each of the n tiles has
to be moved due to C;, N C; = @. We prove a tight
bound on the remaining terms, i.e.,

o(Cy, Hy) +0(Hy, Hy) + 0(H,, Cy) = 0(Cy, Cy). (#)

In Phase (l), tiles are moved exclusively toward
the bounding box of C; along shortest paths to ob-
tain Hy; therefore, o(Cy, C;) = o(Cy, H,) + o(H,, Cy).
The same applies to the reverse of Phase (Ill), i.e.,
o(Cy,H,) = 0(Cy, Hy) + o(Hy, H,). As the lower bound
is symmetric, Equation () immediately follows. The
total makespan is thus in O(c(Cy, C,)) = O(OPT). O

Lemmas 6 and 9 move tiles on shortest paths and
establish schedules that minimize the carry distance.
Equation (#) ensures that the combined paths remain
shortest possible with regard to C, = C,. Thus, the
provided schedule has optimal carry distance. In partic-
ular, we obtain an optimal schedule when A = 0, which
corresponds to the case where the robot incurs no cost
for movement when not carrying a tile.

Corollary 10 An optimal schedule for Cy = C, can be
computed efficiently for any two 2-scaled configurations
C,, C, € C(n) with disjoint bounding bozes and X = 0.

4 Constant-factor approximation for general in-
stances

The key advantage of 2-scaled instances is the absence of
cut vertices, which simplifies the maintenance of connec-
tivity during reconfiguration. Therefore, the challenge
with general instances lies in managing cut vertices.

Most parts of our previous method already work in-
dependent of the configuration scale. The only modifi-
cation required concerns Lemma 7, as the polyomino
may become disconnected while moving free compo-
nents that are not 2-scaled. To preserve local connectiv-
ity during the reconfiguration, we utilize two auxiliary
tiles as a patching mechanism; this technique is also
employed in other models [2,37].

Lemma 11 (%) Let the robot hold two auziliary tiles.
Given a free component F on a polyomino P, we can
efficiently compute a schedule of makespan O(|F|) to
translate F' in the target direction by one unit.

A key idea in the proof of Lemma 11 is partitioning
the configuration into horizontal and vertical strips.

By using auxiliary tiles, we are able to preserve con-
nectivity while translating horizontal strips; see Fig-
ure 9. To guarantee connectivity, the strips must be
moved in a specific order; we resolve this constraint us-
ing a recursive strategy that systematically moves de-
pendent strips in the correct sequence.

HEEE —~ | | |

1 —> \ '—Pi \'—Pil

Figure 9: Using two auxiliary tiles to retain connectivity
while moving a unit-height strip south.

Theorem 12 (x) For any A € [0,1], there exists
a constant c such that for any two configurations
C,, C, € C(n) with disjoint bounding bozes, we can effi-
ciently compute a schedule for Cy = C, with weighted
makespan at most c- OPT.

To prove Theorem 12, it suffices to demonstrate how
the auxiliary tiles can be obtained (any two tiles that
do not break connectivity can serve this purpose) and
that carrying two tiles can be emulated by sequentially
carrying one tile after the other.

5 Discussion

We presented progress on the reconfiguration problem
for tile-based structures (i.e., polyominoes) within ab-
stract material-robot systems. In particular, we showed
that the problem is NP-hard for any weighting between
moving with or without carrying a tile.
Complementary to this negative result, we developed
an algorithm to reconfigure two polyominoes into one
another in the case that both configurations are con-
tained in disjoint bounding boxes. The computed sched-
ules are within a constant factor of the optimal recon-
figuration schedule. It is easy to see that our approach
can also be used to construct a polyomino, rather than
reconfigure one into another. Instead of deconstructing
a start configuration to generate building material, we
can assume that tiles are located within a “depot” from
which they can be picked up. Performing the second
half of the algorithm works as before and builds the
target configuration out of tiles from the depot.
Several open questions remain. A natural open prob-
lem is to adapt the approach to instances in which the
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bounding boxes of the configurations intersect, i.e., they
overlap, or are nested. This hinges on proving a good
lower bound on the makespan of any such schedule.
Note that a minimum-weight perfect matching does not
provide a reliable lower bound in this setting, as the cost
of an optimal solution can be arbitrarily larger; partic-
ularly in cases involving small matchings, as visualized
in Figure 10.

Figure 10: Although the MWPM has weight 4, the
robot is required to perform at least £ — 1 > 4 empty
moves. This discrepancy shows that the MWPM sig-
nificantly underestimates the true cost, making it un-
suitable as a lower bound for an approximation in the
setting where bounding boxes intersect.

However, an alternative would be to provide an algo-
rithm that achieves worst-case optimality. Furthermore,
the more general question about three dimensional set-
tings remain open. Our methods could likely be gener-
alized for parallel execution by multiple robots. More
intricate is the question on whether a fully distributed
approach is possible.
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