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Covering radii of 3-zonotopes and the shifted lonely runner conjecture

David Alcántara* Francisco Criado� Francisco Santos�

Abstract

We show that the shifted Lonely Runner Conjecture
(sLRC) holds for 5 runners. We also determine that
there are exactly 3 primitive tight instances of the con-
jecture, only two of which are tight for the non-shifted
conjecture (LRC). Our proof is computational, relying
on a rephrasing of the sLRC in terms of covering radii of
certain zonotopes (Henze and Malikiosis, 2017), and on
an upper bound for the (integer) velocities to be checked
(Malikiosis, Santos and Schymura, 2024+).

As a tool for the proof, we devise an algorithm for
bounding the covering radius of rational lattice poly-
topes, based on constructing dyadic fundamental do-
mains.

This is an extended abstract for the preprint [1].

1 Introduction

The lonely runner conjecture (LRC) states that if n+1
runners run along a circle of length one with constant,
distinct, velocities, all starting at the origin, then for
every runner there is a time at which all other run-
ners are at distance at least 1/(n + 1) from it. It was
posed in 1968 by J. Wills [14] in the language of dio-
phantine approximation, and is currently proved up to
n = 6 [2]. The conjecture has attracted quite some
attention due to the simplicity of its statement and be-
cause it admits various interpretations, from its original
diophantine approximation statement, to visibility ob-
struction, billiard trajectories or nowhere zero flows in
graphs, among others. See [12] for a very recent sur-
vey. We are interested in the so-called shifted version,
a generalization in which runners are allowed to have
different starting points. This version appeared in print
for the first time in 2019 [3].

In both the original and the shifted versions, the run-
ner we are looking at can be fixed at the origin, since
only relative velocities are important. Hence the shifted
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conjecture becomes the following (the original LRC is
the special case where si = 0 for all i):

Conjecture 1 (sLRC) Let v1, . . . , vn, s1, . . . , sn ∈ R
be real numbers, with the vi distinct and non-zero.
Then, there is a t ∈ R such that for every i ∈ [n] :=
Z/nZ, the distance between vit + si and the closest in-
teger, dist(vit+ si,Z) ≥ 1

n+1 .

Since the order of the runners is not relevant, we as-
sume without loss of generality that v1 < · · · < vn.
This shifted version of the Lonely Runner Conjecture

is only currently proved up to n = 3 (“four runners”) [5,
13].1 For our proof we use that in Conjecture 1 (and in
the original LR conjecture) there is no loss of generality
in assuming all velocities vi to be positive integers [5,6,
Section 4.1]. We then rely on the following result of
Malikiosis, Santos and Schymura:

Theorem 1 ( [11, Corollary 1.11]) sLRC holds for
n = 4 for all integer velocities with sum at least 196.

That is, only the velocity vectors (v1, v2, v3, v4) ∈ Z
with 1 ≤ v1 < v2 < v3 < v4 and v1 + v2 + v3 +
v4 ≤ 195 need to be checked. We can also assume
gcd(v1, v2, v3, v4) = 1 since dividing all velocities by a
common factor c does not change the problem: the po-
sitions at time t of the original problem coincide with
the positions at time ct of the new one. With these
considerations our main result is:

Theorem 2 There are 2 133 561 velocity vectors
(v1, v2, v3, v4) ∈ Z with 1 ≤ v1 < v2 < v3 < v4,
v1 + v2 + v3 + v4 ≤ 195 and gcd(v1, v2, v3, v4) = 1. The
sLRC holds for all of them.

Corollary 3 sLRC (Conjecture 1) holds for n = 4 (five
runners).

We also show there are exactly 3 primitive integer
velocity vectors that are tight, meaning that for them
the bound 1

5 is the best possible.

Theorem 4 The only integer velocity vectors
(v1, v2, v3, v4) ∈ Z4 with 1 ≤ v1 < v2 < v3 < v4,
and gcd(v1, v2, v3, v4) = 1 for which there are starting
points s1, . . . , sn ∈ R such that for every time t ∈ R,
there is an index i ∈ [n] such that dist(vit+ si,Z) ≤ 1

5 ,
are (1, 2, 3, 4), (1, 3, 4, 6), and (1, 3, 4, 7).

1Observe that Rifford [13] refers to this as the case n = 4
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Clearly, being tight for the nonshifted version implies
tight for the shifted one. As an example, it is easy to
show, as was already observed by Wills [15], that the
vector (1, . . . , n) is tight for the nonshifted version, for
all n ∈ N: suppose that at a certain time t we have no
vit in [−1/(n+1), 1/(n+1)]+Z. Then the pigeon-hole
principle implies that at that time at least two runners,
say i and i′ must be in the same interval [j/(t+1), (j+
1)/(t+1)]+Z for some j ∈ [n− 1]. But then, assuming
w.l.o.g. that i′ > i, we have the contradiction that2

vit, vi′t ∈
[

j
n+1 ,

j+1
n+1

]
+ Z ⇒

vi′−it = vi′t− vit ∈
[
− 1

n+1 ,
1

n+1

]
+ Z,

The vectors (1, 2, 3, 4) and (1, 3, 4, 7) are known to
be tight for the non-shifted LRC and, in fact, they are
the only ones for n = 4 [7]. The vector (1, 3, 4, 6) is
new and shows that shifted tightness does not imply
the unshifted one.

Our method (as well as the proof of Theorem 1 in [11])
is based on the relation between the Lonely Runner
conjecture (both shifted and original one) to (n − 1)-
dimensional zonotopes with n generators [3, 8]. In par-
ticular, the sLRC can be restated as a bound on the
covering radius of a certain class of zonotopes in Rn−1.
Our proofs of Theorems 2 and 4 are computational;

for each primitive velocity vector we build a fundamen-
tal domain of the integer lattice Z3 that fits in the di-
lated zonotope associated to it. This certifies that its
covering radius satisfies the bound.

To prove tightness of the instances of Theorem 4, we
explicitly find the last covered points of the zonotopes.
These points correspond to the starting points of the
sLRC which are tight for those velocity vectors.

Our algorithm to construct fundamental domains can
in fact decide the covering radius of arbitrary lattice
polytopes in any dimension.

2 Zonotopal statement of the LRC

We here recall the reformulation of Conjecture 1 in
terms of zonotopal geometry, derived in [3, 8, 11].

A zonotope is any Minkowski sum of line segments.
As such, any zonotope Z can be written as

c+

n∑
i=1

[0,ui] =

{
c+

n∑
i=1

λiui : λi ∈ [0, 1] ∀i

}
,

for a certain finite set u1, . . . ,un ∈ Rd of vectors, called
the generators of Z, and a certain point c. This point
is not important for us, since all that we do is invariant
under translation. One natural choice is c = 0 but

2This argument is an instance of the general proof of Dirichlet’s
approximation theorem.

often a more convenient choice is c = 1
2

∑n
i=1 ui, since

it makes the zonotope become Z = 1
2

∑n
i=1[−ui,ui],

and be centrally symmetric around the origin.

2.1 Lonely runner zonotopes and volume vectors

Definition 1 A Lonely Runner (LR) Zonotope is any
zonotope Z ⊂ Rn−1 generated by a set of n integer vec-
tors U = {ui : 1 ≤ i ≤ n} ⊂ Zn−1 in linear general
position; that is, such that every n − 1 of them are a
linear basis of Rn−1.
The volume vector of Z is the vector v =

(v1, . . . , vn) ∈ Z>0 defined by

vi := |det(U \ {ui})|. (1)

When all entries of the volume vector are distinct we
say that Z is a strong Lonely Runner (sLR) Zonotope.

We call v the volume vector of Z, because its entries
are the volumes of the n parallelepipeds that make up
Z. In particular we have that vol(Z) =

∑n
i=1 vi (see

details, e.g., in [11]). Observe also that the generators
and the volume vector satisfy

v1u1 ± · · · ± vnun = 0

for some choice of signs. In fact, this equation (together
with positivity of the vi) characterizes v for given gen-
erators, modulo a scalar factor.

In the following result and the rest of the paper, a
unimodular transformation is an affine transformation
with integer coefficients and determinant ±1.

Proposition 5 (Prop. 2.2, [1], see also §1.2, [11])
For every integer v = (v1, . . . , vn) ∈ Z>0

n there is
some LR zonotope with integer generators and with
volume vector v. If gcd(v1, . . . , vn) = 1, then any
two such zonotopes are equivalent by a unimodular
transformation.

2.2 Covering radius and the sLRC

A convex body in Rd is a convex compact subset. We
assume our convex bodies to be nondegenerate, that is,
that they have non-empty interior or, equivalently, that
they are not contained in a hyperplane. This includes
all bounded full-dimensional polytopes.

Definition 2 (Covering radius) Let C ⊆ Rd be a
convex body. The covering radius of C, denoted µ(C),
is the smallest dilation factor ρ > 0 such that

ρC + Zd = Rd.

The covering radius is invariant under real transla-
tions and unimodular transformations of C since they
amount to translations and unimodular transformations
of ρC + Zd.
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The zonotopal restatement of the Shifted Lonely Run-
ner Conjecture is the following. Our statement is taken
from [11] but the result is implicit in [3, 5, 8].

Proposition 6 ( [8], see also [11, Proposition 1.8])
Let v = (v1, . . . , vn) ∈ Zn

>0 with pairwise distinct en-
tries and gcd(v1, . . . , vn) = 1. Then, the following are
equivalent:

1. A time t as required by the Shifted Lonely Runner
Conjecture exists for velocities v.

2. The sLR zonotope Z with volume vector v has
µ(Z) ≤ n−1

n+1 .

2.3 Covering radius via fundamental domains

In order to apply this result one does not need to com-
pute µ(Z) (which is quite expensive, see e.g. [5]), but
only check whether a certain number is a bound for it.
This checking is closely related to finding a fundamental
domain inside a scaled copy of Z.
Recall that a fundamental domain of Rd (with respect

to Zd) is a set containing exactly one representative of
each coset p + Zd, p ∈ Rd.The definition of covering
radius trivially translates to:

Lemma 7 Let C be a convex body in Rd and ρ > 0.
Then, the following are equivalent:

1. µ(C) ≤ ρ.

2. ρC contains representatives of all Rd/Zd.

3. ρC contains a fundamental domain.

4. No open set W ∈ Rd satisfies ρC ∩ (W + Zd) = ∅.

Proof. The implications (1) ⇔ (2) ⇔ (3) and (2) ⇒
(4) are obvious. Let us prove (4) ⇒ (1). µ(C) > ρ
implies there is a p ̸∈ ρC +Zd. Since ρC +Zd is closed,
its complement W := Rd \ ρC is open and

ρC ∩ (W + Zd) ⊂ (ρC ∩ (Rd \ ρC)) + Zd = ∅. □

2.4 The denominator of the covering radius

It is well-known and easy to show that the covering ra-
dius of a rational polytope is rational (see, e.g., [10,
Proposition 5.1]). We give an explicit bound for its
denominator in terms of the defining equations. The
denominator of a rational number ρ is defined as the
minimum positive integer s such that sρ is an integer.
Having a bound for the denominator allows our algo-
rithms to certify an exact upper bound for µ(P ) from
an approximate one, as follows.

Proposition 8 Let P be a rational polytope and let
D ∈ N be an upper bound for the denominator of µ(P ).
(For example, but not necessarily, a bound obtained by
Corollary 10). Let ρ = r/s with r, s ∈ Z and s > 0.
Then, the following equivalences hold:

1. µ(P ) ≤ ρ if and only if µ(P ) < ρ+ 1
sD

2. µ(P ) ≥ ρ if and only if µ(P ) > ρ− 1
sD

Proof. One direction is obvious in both cases. For the
other one, we know that µ(P ) = r′

s′ for integers r′, s′

with 0 < s′ ≤ D. Assuming r′

s′ ̸=
r
s we have that

|µ(P )− ρ| =
∣∣∣ r′s′ − r

s

∣∣∣ = ∣∣∣ r′s−rs′

s′s

∣∣∣ ≥ 1
ss′ ≥

1
sD .

Hence, either µ(P ) = ρ, µ(P ) ≥ ρ + 1
sD or µ(P ) ≤

ρ− 1
sD . □

Our bound uses the concept of last covered point.

Definition 3 (Last covered point [4, 5]) Let C ⊆
Rd be a convex body. A last covered point for C is
any p ∈ Rd with p /∈ (µ(C)C)◦ + Zd.

Since µ(C) is invariant under translation, we may as-
sume 0 ∈ C◦ without loss of generality. This simplifies
some arguments because it implies that ρC+q is mono-
tone increasing in ρ. Therefore, once a point is covered
by some copy ρC + q, it is also covered by the same
copy for any larger ρ′.

In particular, under the assumption 0 ∈ C◦ we have
that a point p is last covered if ρC+Zd does not contain
p for any ρ < µ(C), which explains the name.

Observation 1 The set of last covered points is always
non-empty.

Proof. Assuming without loss of generality 0 ∈ C◦,
for each point p ∈ Rd let ρp = min{ρ ∈ R≥0 : p ∈
(ρC)◦ + Zd} be the covering time of the point p. This
definition is invariant by integer translations, and con-
tinuous. Since Rd/Zd is compact, there must be some
point p with maximal covering time, i.e. ρp = µ(C).
This point is a last covered point. □

In the rest of the section, P ∈ Rd is a polytope defined
by the system of inequalities Ax ≤ b for some matrix
A ∈ Rm×d and vector b ∈ Rm. For an element i ∈ [m] or
subset I ⊂ [m], Ai, bi, AI , bI , etc. denote the restriction
of a matrix or vector to the rows labelled by i or I.

Lemma 9 ( [5, Lemma 3.1]) Let P = {Ax ≤ b} be
a polytope and let ρ = µ(P ). Then, there is

� a subset R ⊂ [m] of rows with |R| = d + 1 and
det(AR|bR) ̸= 0 and

� a lattice point qi ∈ Zd for each i ∈ R,

such that the system

Ai(x− qi) = ρbi ∀i ∈ R (2)

has a unique solution in Rd+1 and this solution is a last
covered point.
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The proof uses an extremal argument and Farkas’
lemma. See Section A.1 in the appendix for details.

Corollary 10 Let P be a rational polytope described by
Ax ≤ b with A ∈ Zm×d and b ∈ Zm. Then µ(P ) is a
rational number and its denominator is bounded by

max
R∈( [m]

d+1)
|det (AR|bR)|.

Proof. Apply Cramer’s rule to the variable t in the
system of Lemma 9. □

3 Our Algorithms

In this section we introduce the algorithm we have used
to find fundamental domains within each relevant sLR
zonotope, postponing some details until Section 4.

Obtaining a representative zonotope for a velocity
vector is discussed in [11]. We further simplify our repre-
sentatives, reducing the length of their generators using
the LLL algorithm, as described in Section 4.1.

3.1 Certifying an upper bound for the cov. radius

We here describe an algorithm to decide whether a facet-
defined polytope P = {x ∈ Rd : Ax ≤ b contains a
fundamental domain. By Lemma 7, this is equivalent
to certifying a given upper bound ρ for the covering
radius of a polytope.

We consider a special family of fundamental domains
of the integer lattice, given by unions of dyadic voxels.

Definition 4 A dyadic d-voxel of level ℓ ∈ Z≥0 is a
half-open cube of the form

c+
1

2ℓ
[0, 1)d,

for some dyadic point c ∈ 1
2ℓ
Zd. The integer point ⌊c⌋ is

the displacement of the voxel, and the difference 2ℓ(c−
⌊c⌋) is the type of the voxel.

All dyadic voxels of the same type are equivalent by
integer translation and the voxel types are naturally ar-
ranged as an infinite rooted 2ℓ-ary tree with the voxels
of level ℓ at depth ℓ. We call this the infinite dyadic
tree.3

A dyadic fundamental domain is a fundamental do-
main obtained as a finite union of dyadic voxels.

Every dyadic fundamental domain can be expressed
as (the leaves of) a full-subtree of the infinite dyadic
tree, with leaves labelled by their displacements.

3One can represent each type of level ℓ as a vector b =
(b1, . . . ,bd) where each bi is a binary string of length ℓ. In
this representation b is an ancestor of b′ in the infinite dyadic
tree if and only if each bi is an initial segment, or prefix, of the
corresponding b′

i. Equivalently, if the voxel of type b with zero
displacement is contained in that of type b′.

The simplest of such domains is the unit cube, that
is, the root of the dyadic tree. Our algorithm performs
a search in the infinite dyadic tree, starting with the
root and iteratively subdividing all leaves which cannot
be translated to fit in our zonotope, until either (a) all
leaves fit inside, which certifies that we have constructed
a dyadic fundamental domain contained in P or (b) the
center of one leaf is found to have no translation inside
P , certifying that no such fundamental domain exists.

This algorithm is illustrated in Figure 1.

Figure 1: States of our Algorithm at different depths,
applied to 1

2Z where Z is the 2-dimensional sLR zono-
tope with volume vector (1, 2, 4). Notice that there are
two choices for each voxel in the last step.

The decision of whether a voxel admits an integer
translation that fits in our zonotope requires checking
the feasibility of an integer linear program.

Proposition 11 Let P = {Ax ≤ b} ⊂ Rd be a polytope
and let V = c + [0, ϵ)d be a voxel. Then, P contains
an integer translation of V if and only if the following
Integer Linear Program is feasible:

find x ∈ Zd subject to Ax ≤ b−Ac−A≥0 ϵ, (3)

where ϵ ∈ Rd is the vector with all entries equal to ϵ and
A≥0 denotes the matrix with entry (i, j)-th entry equal
to max{0, Aij}, for every (i, j).

Proof. A half-empty voxel is contained in P if and only
the closed voxel is, that is, if and only of all the vertices
of the translated closed voxel are in P . Hence, for a
given x ∈ Zd, the voxel x + V = x + c + [0, ϵ)d is
contained in P if and only if all the points y ∈ {0, ϵ}d
satisfy the inequalities A(y+ c+x) ≤ b. Now, for each
row Ai of A, the maximum value of the functional Ai

on the set {0, ϵ}d is precisely (Ai)≥0 ϵ. □

The search algorithm as described so far has one issue:
P may contain a fundamental domain but no dyadic
one, and in this case our algorithm does not terminate.
For rational polytopes we can solve this issue thanks to
Proposition 8.

Theorem 12 Let P be a rational polytope and let D
be an upper bound for the denominator of µ(P ). Let
ρ = r/s with r, s ∈ Z and s > 0.

1. If µ(P ) ≤ ρ then
(
ρ+ 1

2sD

)
P contains a dyadic

fundamental domain.
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2. If µ(P ) > ρ then there is an ℓ ∈ Z≥0 and a dyadic
point c ∈ 1

2ℓ
{0, . . . , 2ℓ − 1}d such that

(
ρ+ 1

2sD

)
P

does not intersect c+ Zd.

See Section 4.2 for a proof.
Hence, rather than applying our algorithm to the

zonotopes dilated by 3
5 we dilate them by ( 35 + 1

10D ),
which does not affect the result, yet ensures the algo-
rithm terminates.

4 Algorithm details

4.1 Enumeration, construction, and preprocessing
of sLR zonotopes

According to Theorem 1 we only need to enumerate
sLR zonotopes up to volume 195. We first construct
the list of possible volume vectors, that is, the 4-tuples
v = (v1, . . . , v4) ∈ Z4 with 0 < v1 < v2 < v3 < v4.
As observed in the introduction we can assume that
gcd(v1, v2, v3, v4) = 1. Moreover, by Proposition 5,
with this restriction there is a unique sLR zonotope
(modulo unimodular equivalence) for each volume vec-
tor. Enumerating such 4-tuples is algorithmically trivial
and took less than a second in a standard PC:

Proposition 13 There are exactly 2 133 561 vectors
(v1, v2, v3, v4) ∈ Z with 1 ≤ v1 < v2 < v3 < v4,
gcd(v1, v2, v3, v4) = 1 and

∑
vi ≤ 195.

We then need to generate a representative zonotope
from its volume vector v. This is done with Algorithm 1,
which follows the ‘existence’ part of the proof of Propo-
sition 5 given in [11].

Algorithm 1: Compute generators for a LR
zonotope from its volume vector.

Input : v = (v1, . . . , vn) ∈ Zn
>0, with

gcd(v1, . . . , vn) = 1.
Output: A matrix M = (u1, . . . ,un) ∈ Z(n−1)×n

such that u1, . . . ,un generate a LR
zonotope with volume vector v.

1 Let M ′ :=

 −vn v1
. . .

...
−vn vn−1

 .

2 Let H ∈ Z(n−1)×n be the column-wise Hermite

normal form of M , and let B ∈ Z(n−1)×(n−1)

consist of the first n− 1 columns of H.
3 Apply an LLL-reduction to the rows of B−1M ′

and let M ∈ Z(n−1)×n have as rows the resulting
reduced vectors.

4 return M .

Step 1 in the algorithm creates an integer matrix
M ′ ∈ Z(n−1)×n whose columns generate a LR zono-
tope with volume vector a scalar multiple of (v1, . . . , vn).

Step 2 then uses a column-wise Hermite normal form of
M ′ to construct a basis (the columns of the matrix B in
the algorithm) of the lattice Λ generated by the u′

i. Ob-
serve that rk(M ′) = n− 1 implies that the last column
of its Hermite normal form H is zero, and B is simply
equal to H without that column.

Now, B−1 is the matrix of a linear isomorphism

Λ
∼=−→ Zn−1, so the columns of B−1M ′ would already

be valid generators for a LR zonotope with volume vec-
tor (v1, . . . , vn). However, the generators obtained in
this way typically have some large entries, resulting in
‘long and skinny’ zonotopes that are are poorly condi-
tioned for our method to compute covering radii. To
overcome this we preprocess the generators in step 3
of the algorithm, by performing an LLL lattice basis re-
duction to the rows of B−1M ′.4 This produces a matrix
M whose columns are unimodularly equivalent to those
of B−1M ′, but with smaller entries.

For our covering radius computations we need to con-
vert the generators of the zonotope into an inequal-
ity description of it. This, for an arbitrary zonotope
Z ⊂ Rd with generators U = {u1, . . . ,un} is done as

follows, where we are identifying
∧d−1 Rd ∼= (Rd)∗ in

the natural way.

Proposition 14 Let Z = 1
2

∑n
i=1[−ui,ui] be the 0-

symmetric zonotope with generators u1, . . . ,un. Then

Z =

{
x ∈ Rd : −bS ≤ aSx ≤ bS : S ∈

(
[n]

d− 1

)}
,

where

aS :=
∧
i∈S

ui ∈ (Rd)∗ and bS :=
1

2

n∑
i=1

|aS ui|.

Proof. Each facet of a zonotope is a zonotope itself,
generated by the ui contained in, and spanning, a linear
hyperplane. Hence, every normal vector is indeed of the
form aS for some (d− 1)-subset S of U .
By central symmetry, there are two parallel facets

with normal vectors ±aS . The corresponding facet in-
equalities are −bS ≤ aSx ≤ bS , since ±bS are the mini-
mum and maximum values taken by aS in the set{

n∑
i=1

±ui

}
,

which contains all vertices of Z. □

4.2 Building a dyadic fundamental domain

In this section we present Algorithm 2, the concrete
algorithm that explores the infinite dyadic tree to decide

4We have implemented the LLL algorithm with δ = 3/4.
Higher values of δ(0, 1) would give better zonotopes, but would
increase the running time.
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the covering radius of an arbitrary lattice polytope, as
discussed in Section 3.

The algorithm requires a facet description of the poly-
tope, which can be derived from the generators of a
zonotope by Proposition 14.

The termination of this algorithm follows from The-
orem 12, of which we give now proof.

Proof. (of Theorem 12) For part (1) we only need to
use that

µ(P+) =
µ(P )

ρ+ 1
2sD

≤ ρ

ρ+ 1
2sD

< 1.

For each ℓ ∈ N let Dℓ be the union of all the dyadic
boxes of depth ℓ contained in P+. Since Dℓ converges
(e.g. in the Hausdorff metric) to P+ when ℓ goes to
infinity, we have that µ(Dℓ) converges to µ(P+). In
particular, there is an ℓ such that µ(Dℓ) < 1. Hence, Dℓ

contains a fundamental domain, and this fundamental
domain can be obtained taking one representative for
each type of voxel in the union Dℓ.
For part (2) we use that µ(P ) > ρ implies (by Corol-

lary 8) that µ(P ) ≥ ρ+ 1
sD . Hence

µ(P+) =
µ(P )

ρ+ 1
2sD

≥
ρ+ 1

sD

ρ+ 1
2sD

> 1.

The statement then follows from the density of the
dyadic points Z[ 12 ]

d in Rd and Lemma 7, which asserts
the existence of an open set W ⊂ Rd \ (P+ + Zd). □

Theorem 15 Algorithm 2 always terminates and it
correctly decides whether µ(P ) ≤ ρ for any lattice poly-
tope P and ρ ∈ Q+.

Proof. Observe that the algorithm returns a certificate
in either case. Let us first show their correctness.

If the algorithm finishes with a set of dyadic voxels,
these voxels are a full subtree of the infinite dyadic tree
by construction, and hence they form a dyadic funda-
mental domain. Furthermore, all of these voxels are
contained in P+, so µ(P ) ≤ (ρ + 1

2sD ) and Corollary 8
implies µ(P ) ≤ ρ.

On the other hand, if the algorithm finishes with a
point c such that P+ does not intersect c+Zd, Lemma 7
implies µ(P ) > (ρ+ 1

2sD ) > ρ.
To prove that the algorithm terminates we handle the

two cases separately.
If µ(P ) ≤ ρ, Theorem 12 guarantees the existence of

a dyadic fundamental domain D contained in P+. Let ℓ
be the maximum depth of the voxels in D. Then every
voxel type of depth ≥ ℓ has a representative contained
in P+, so the algorithm will never enter the “else” in
line 14 with a voxel of depth ≥ ℓ. Hence, the algorithm
can perform the while loop only finitely many times
before N becomes empty.

Algorithm 2: Decide whether µ(P ) ≤ ρ.

Input : A rational polytope P = {Ax ≤ b}
(with A and b integer) and a rational
number ρ = r/s, with r, s ∈ Z+.

Output: A dyadic fundamental domain S or a
dyadic point c certifying whether
µ(P ) ≤ ρ or not, as in Theorem 12.

1 Let D be a bound on the denominator of µ(P ),
such as µdet(A,b).

2 Let

P+ =

(
ρ+

1

2sD

)
P =

{
Ax ≤

(
ρ+

1

2sD

)
b

}

3 Initialise a queue N of ‘nodes to be processed’
containing the unit cube

4 Initialise an empty list S of ‘voxels in the
fundamental domain’

5 while there are nodes in N do
6 Let V = c+ [0, 1

ℓd
)d be one such node of

maximum size.
7 Delete V from N and

8 if P+ does not intersect c+ Zd then
9 return c

10 else
11 if ∃ p ∈ Zd with p+ V ⊂ P+ then
12 add the voxel p+ V to S
13 else
14 add the 2d children of V to N

15 return S

If µ(P ) > ρ, Theorem 12 guarantees the existence of
a dyadic point c with (c + Zd) ∩ P+ = ∅. Let ℓ be the
minimal depth of such a point. Since the algorithm pro-
cesses the infinite dyadic tree in a breadth-first search
manner, in a finite number of steps it will check all the
dyadic points of depth ℓ (either implicitly for those con-
tained in voxels of depth ≤ ℓ and with p+ V ⊂ P+, or
explicitly for those not contained in such voxels). □
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Appendix

A.1 Bound for the denominator of the cov. radius

Proof. (of Lemma 9) As in Observation 1, we may assume
0 ∈ P ◦ without loss of generality, or equivalently, that bi > 0
for all i ∈ [m].

Each facet of a translated polytope {ρP + q : q ∈ Zd}
is labelled by a point q ∈ Zd and an index i ∈ [m]. For
each last covered point p, let Rp be the set of indices i such
that p lies in the i-th facet of ρP + qi, for some qi ∈ Zd.
Observe that p lies in the affine subspace Lp := {x ∈ Rd :
∀i ∈ Rp, Ai(x − qi) = ρbi}, since Ai(x − qi) = ρbi is the
facet equation for the i-th facet of ρP + qi.

Choose a last covered point p so that Rp is maximal.
Maximality implies that Lp = {p}, since otherwise moving
the point within Lp until an extra facet of some {ρP + q :
q ∈ Z} is met (which happens at the latest when we are
about to leave a certain ρP +qi containing p) gives us a last
covered point p′ with Rp′ strictly containing Rp.

The fact that Lp = {p} implies that the matrix ARp

consisting of rows used in Rp has full rank, equal to d.

Now, observe that the vectors Ai for i ∈ Rp must have
a positive linear dependence. Otherwise, by (one of many
versions of) Farkas’ lemma, there is a vector v ∈ Rd such
that ⟨Ai,v⟩ > 0 for all i ∈ Rp. Then, p would not be
last covered, as p + εv would not be covered by any P +
qi. Locally, these are the only translated copies of P that
could potentially cover p. Therefore, no translated copy of P
covers p+εv, so p+εv would have larger covering time than
p, contradicting the assumption of p being last-covered.

The positive linear dependence of the vectors Ai for i ∈
Rp implies that the system of equalities

Ai(x− qi) = tbi, i ∈ Rp,

where t is considered an extra variable, has no solution with
t ∈ [0, ρ). Indeed, let λi ∈ R≥0 for i ∈ Rp be the coefficients
of the linear dependence we defined above. Then,

Ai((x− p) + p− qi) = (t− ρ+ ρ)bi, i ∈ Rp,

Ai(x− p) +Ai(p− qi) = ρbi + (t− ρ)bi, i ∈ Rp,

Ai(x− p) = (t− ρ)bi, i ∈ Rp,

∑
i∈Rp

λiAi(x− p) =
∑
i∈Rp

λi(t− ρ)bi

0 =
∑
i∈Rp

λi(t− ρ)bi

0 = (t− ρ)

 ∑
i∈Rp

λibi

 .

But since the λi are non-negative (and not all of them are
zero) and the bi are positive, then it must be that t = ρ.

Thus, the system has only solutions of the form (x, ρ) and,
hence, only the solution (p, ρ). This implies that the matrix
(ARp | − bRp) has rank d+ 1.

Choose R to be a basis for the rows of (ARp |bRp). □

https://arxiv.org/abs/2506.13379
https://arxiv.org/abs/2411.06903v2
https://arxiv.org/abs/2409.20160
https://arxiv.org/abs/2409.20160
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A.2 Implementation considerations

Our implementation of Algorithm 2 uses the HiGHS MIP
solver [9] to determine the feasibility of Integer Linear Prob-
lems defined in Proposition 11.

Since the MIP solver relies on numerical methods and
hence is subject to numerical errors, we round all proposed
solutions and check them for feasibility under exact linear
algebra. We encountered no issues of this kind solving any
of the ILPs needed to construct certificates for all volume
vectors with volume at most 195.

In such cases, in lack of an exact MIP solver, a brute force
approach could be used, checking all candidate translations
within the bounding box of the zonotope.

Dyadic fundamental domains with small circumradius
or small volume of convex hull can be obtained with the
same algorithm, but turning the feasibility problem (3) from
Proposition 11 into an optimization problem that minimizes
some norm. This modification does not affect the search
strategy or the types of voxels obtained in the final funda-
mental domain; it just gives the “best” representative of each
type.

For example, the optimization problem for the Minkowski
norm of P is particularly simple:

minimize ρ ∈ R
subject to Ax− bρ ≤ −Ac−A≥0 ϵ

ρ ≥ 0

x ∈ Zd.

Optimizing with respect to this norm results in a dyadic
fundamental domain fitting in the smallest possible dilation
of the zonotope, among those with the types given by the
breadth-first search.

The convex hull of the domain can be minimized even
more by further subdividing all voxel types to reach a regular
tree of any given depth, at the expense of solving many more
ILPs.

Since our zonotopes are centrally symmetric around the
origin, a voxel type will lie in our fundamental domain if
and only if the opposite type does. Hence, we only need to
check half of the voxels in the first subdivision of the unit
cube, which automatically gives that we check only half of
each level. This has the advantage of halving the execution
time and producing centrally symmetric certificates, which
are both smaller and visually clearer.

Implementations can easily avoid having to deal with ra-
tional matrices and vectors by scaling by the common de-
nominator.
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