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The Kinetic Hourglass Data Structure for Computing the Bottleneck
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Abstract

The kinetic data structure (KDS) framework is a pow-
erful tool for maintaining various geometric configura-
tions of continuously moving objects. In this work, we
introduce the kinetic hourglass, a novel KDS designed to
compute the bottleneck distance for geometric match-
ing problems. We detail the events and updates re-
quired for handling general graphs, accompanied by a
complexity analysis. Furthermore, we demonstrate the
utility of the kinetic hourglass by applying it to com-
pute the bottleneck distance between two persistent ho-
mology transforms (PHTs) derived from shapes in R2,
which are topological summaries obtained by computing
persistent homology from every direction in S1.

1 Introduction

Motion is a fundamental property of the physical world.
To address this challenge computationally, Basch et
al. proposed the kinetic data structure (KDS) frame-
work [6], designed to maintain various geometric con-
figurations for continuously moving objects. The KDS
framework has been applied to many geometric prob-
lems since it was introduced, including but not limited
to finding the convex hull of a set of moving points
in the plane [5], the closest pair of such a set [5], a
point in the center region [1], kinetic medians and kd-
trees [2], and range searching; see [19] for a survey. In
this work, we extend the framework to the geometric
matching problem. Specifically, we are interested in the
min-cost matching of a weighted graph with continu-
ously changing weights on the edges. The result is that
the bottleneck cost can be updated, rather than recom-
puting the needed matching from scratch every time.
The static bottleneck distance between persistence di-

agrams has been studied extensively, both theoretically
and practically [7, 14, 16, 22, 23]. Since the bottleneck
distance between persistence diagrams can be formu-
lated as a bipartite graph matching problem [15], the
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work in this abstract can be used to improve bottleneck
distance computation for a vineyard [10, 24, 28], more
generally in the case of the Persistent Homology Trans-
form [11, 17, 26], or even more generally for Persistent
Homology Bundles [4, 20,21].

2 Background

Broadly, we are interested in the following geometric
matching problem. Given an undirected graph G =
(V,E), a matching M of G is a subset of the edges E
such that no vertex in V is incident to more than one
edge in M . A vertex v is said to be matched if there
is an edge e ∈ M that is incident to v. A matching
is maximal if it is not properly contained in any other
matching. A maximum matching M is a matching with
the largest cardinality; i.e., for any other matching M ′,
|M | ≥ |M ′|. A maximum matching is always maximal;
the converse is not true.

For a bipartite graph G = (X ⊔ Y,E) where |X| =
|Y | = n and |E| = m, a maximum matching is a perfect
matching if every v ∈ X ⊔ Y is matched, and |M | = n.
This can be expressed as a bijection η : X → Y . For
a subset W ⊆ X, let N(W ) denote the neighborhood
of W in G, the set of vertices in Y that are adjacent
to at least one vertex of W . Hall’s marriage theorem
provides a necessary condition for a bipartite graph to
have a perfect matching.

Theorem 1 (Hall’s Marriage Theorem) A bipar-
tite graph G = (X ⊔ Y,E) has a perfect matching if
and only if for every subset W of X: |W | ≤ |N(W )| .

Building on Hall’s Marriage Theorem, we extend
our focus to weighted bipartite graphs. Given such a
graph, a fundamental optimization problem is to iden-
tify matchings that minimize the maximum edge weight,
known as the bottleneck cost.

Definition 2 A weighted graph G = (G, c) is a graph G
together with a weight function c : E → R+. The bottle-
neck cost of a matching M for such a G is max{c(e) |
e ∈ M}. The bottleneck edge is the highest weighted
edge in M , assuming this is unique. A perfect match-
ing is optimal if its cost is minimal among all perfect
matchings. An optimal matching is also called a min-
cost matching.
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To find a maximum matching of a graph, we use aug-
menting paths.

Definition 3 For a graph G and matching M , a path
P is an augmenting path for M if:

1. the two end points of P are unmatched in M , and

2. the edges of P alternate between edges e ∈ M and
e /∈ M .

Theorem 4 (Berge’s Theorem) A matching M in a
graph G is a maximum matching if and only if G con-
tains no M -augmenting path.

The existing algorithms that compute the bottle-
neck cost are derived from the Hopcroft-Karp maximum
matching algorithm, which we briefly review [22]. Given
a graph G = (X ⊔ Y,E) where |E| = n, and an initial
matching M , the algorithm iteratively searches for aug-
menting paths P . Each phase begins with a breadth-
first search from all unmatched vertices in X, creating
a layered subgraph of G by alternating between e ∈ M
and e /∈ M . It stops when an unmatched vertex in
Y is reached. From this layered graph, we can find
a maximal set of vertex-disjoint augmenting paths of
the shortest length. For each P , we augment M by
replacing M ∩ P with P\M . We denote this process
as Aug(M,P ) = M \ (M ∩ P ) ∪ (P \ M). Note that
|Aug(M,P )| is a matching with |Aug(M,P )| = |M |+1,
so we can repeat the above process until no more aug-
menting paths can be found. By Theorem 4, the result-
ingM is maximum. The algorithm terminates inO(

√
n)

rounds, resulting in a total running time ofO(n2.5). This
algorithm was later improved to O(n1.5 log n) for geo-
metric graphs by Efrat et al. by constructing the layered
graph via a near-neighbor search data structure [16].

2.1 Bottleneck Distance

Let X and Y be two sets of n points. We consider
the bipartite graph obtained by adding edges between
points whose weight c : E → R≥0 is at most λ:

Gλ = (X ⊔ Y, {xy | c(xy) ≤ λ}).

Definition 5 The optimal bottleneck cost is the min-
imum λ such that Gλ has a perfect matching, denoted
as dB(G).

We are interested in computing the bottleneck dis-
tance in the context of persistent homology. Persistent
homology is a multi-scale summary of the connectivity
of objects in a nested sequence of subspaces; see [13] for
an introduction. For the purposes of this section, we
can define a persistence diagram to be a finite collection
of points {(bi, di)}i with di ≥ bi for all i. Further de-
tails and connections to the input data will be given in
Section 4.

Given two persistence diagrams X and Y , a partial
matching is a bijection η : X ′ → Y ′ on a subset of
the points X ′ ⊆ X and Y ′ ⊆ Y ; we denote this by
η : X ⇌ Y . The cost of a partial matching is the
maximum over the L∞-norms of all pairs of matched
points and the distance between the unmatched points
to the diagonal:

c(η) =max
(
{∥x− η(x)∥∞ | x ∈ X ′}

∪
{

1
2 |z2 − z1| | (z1, z2) ∈ (X \X ′) ∪ (Y \ Y ′)

} )
and the bottleneck distance is defined as dB(X,Y ) =
infη:X⇌Y c(η).

We now reduce finding the bottleneck distance be-
tween persistence diagrams to a problem of finding
the bottleneck cost of a bipartite graph. Let X and
Y be two persistence diagrams given as finite lists of
off-diagonal points. For any off-diagonal point z =
(z1, z2), the orthogonal projection to the diagonal is
z′ = ((z1+z2)/2, (z1+z2)/2). LetX (resp. Y ) be the set
of orthogonal projections of the points in X (resp. Y ).
Set U = X⊔Y and V = Y ⊔X. We define the complete
bipartite graph G = (U ⊔ V,U × V, c), where for u ∈ U
and v ∈ V , the weight function c is given by

c(uv) =

{
∥u− v∥∞ if u ∈ X or v ∈ Y

0 if u ∈ X and v ∈ Y .

An example of the bipartite graph construction is shown
in Figure 1. This graph can be used to compute the
bottleneck distance of the input diagrams because of
the following lemma.

Lemma 6 (Reduction Lemma [15]) For the above
construction of G, dB(G) = dB(X,Y ).

birth

de
at
h

birth

de
at
h

Figure 1: Construction of the bipartite graph G based
on the persistence diagrams X and Y .

Naively, given a graph G of size n, we can compute
the bottleneck distance by sorting the edge weights and
performing a binary search for the smallest λ such that
Gλ has a perfect matching in O(n2 log n) time, which
dominates the improved Hopcroft-Karp algorithm. Us-
ing the technique for efficient k-th distance selection for
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a bi-chromatic point set under the L∞ distance intro-
duced by Chew and Kedem, this can be reduced to
O(n1.5 log n) [8]. Therefore, the overall complexity to
compute the bottleneck distance of a static pair of per-
sistence diagrams is O(n1.5 log n).

2.2 Kinetic Data Structure

A kinetic data structure (KDS) [5, 18, 19] maintains a
system of objects v that move along a known continuous
flight plan as a function of time, denoted as v = f(v).
Certificates are conditions under which the data struc-
ture is accurate, and events track when the certificate
fails and what corresponding updates need to be made.
The certificates of the KDS form a proof of correct-
ness of the current configuration function at all times.
Updates are stored in a priority queue, keyed by event
time. To advance to time t, we process all the updates
keyed at times before t and pop them from the queue
after updating. We continue until t is smaller than the
first event time in the queue. Finally, we distinguish
between external events, i.e., those affecting the config-
uration function (e.g., maximum or minimum values)
we are maintaining, and internal events, i.e., those that
do not affect the outcome.
The kinetization of a heap results in a kinetic heap,

which maintains the priority of a set of objects as they
change continuously. Maximum and minimum are both
examples of priorities. A kinetic heap follows the prop-
erties of a static heap such that objects are stored as
a balanced tree. The value of a node is stored as
a function of time fX(t). The data structure aug-
ments a certificate for every pair of parent-child nodes
A and B, which is only valid when fA(t) > fB(t)
(resp. fA(t) < fB(t)) for a max (resp. min) heap. Thus,
the failure times of the certificate are the times t such
that fA(t) = fB(t), and updates are done by swap-
ping A and B in the heap while making all relevant
parent-child updates, see Figure 2. The kinetic max
heap supports operations similar to a static heap, such
as create-heap, find-max, insert, and delete. Insertion
and deletion are done in O(log n) time.

Figure 2: Kinetic heap event updates

More efficient solutions to this problem have been de-
veloped, such as the kinetic hanger, introduced by da

Fonseca et al. in [12]. It modifies the kinetic heap by
incorporating randomization to balance the tree, mean-
ing all complexity results are expected rather than de-
terministic. As shown in [12], the kinetic hanger has
O(1) locality. The number of expected events in the
affine motion case is O(n log n) and O(λs(n) logn) for
n s-intersecting curves. The expected runtime is ob-
tained by multiplying by O(logn) for each event. We
use α(·) to denote the inverse Ackerman function and
λs is the length bound for the Davenport-Schinzel Se-
quence; see [3] for details.

3 Kinetic Hourglass

In this section, we introduce a new kinetic data struc-
ture that keeps track of the optimal bottleneck cost of
a weighted graph G = (G, c) where c changes contin-
uously with respect to time t. The kinetic hourglass
data structure is composed of two kinetic heaps; in Sec-
tion 3.3 we will give the details for replacing these with
kinetic hangers. One heap maintains minimum prior-
ity, and the other maintains maximum. Assume we are
given a connected bipartite graph G = (V,E) with the
vertex set V = X ⊔ Y , where |X| = |Y | = n; and edge
set E, where |E| = m. If G is a complete bipartite
graph, then m = n2. The weight of the edges at time
t is given by ct : E → R≥0. Denote the weighted bi-
partite graph by Gt = (G, ct). The weights of those m
edges are the objects we keep track of in our kinetic
hourglass. We assume that these weights, called flight
plans in the kinetic data structure setting, are given for
all times t ∈ [0, T ].

Let Gt
δ ⊆ G be the portion of the complete bipartite

graph with all edges with weight at most δ at time t;
i.e., V (Gt

δ) = V , and E(Gt
δ) = {e ∈ E | ct(e) ≤ δ}. If

the bottleneck distance δ̂t = dB(Gt) is known, we are
focused on the bipartite graph Gt

δ̂
, which we will denote

by Ĝt for brevity. By definition, we know that there
is a perfect matching in Ĝt, which we denote as M t,
although we note that this is not unique. Further, there
is an edge êt ∈ M t with c(êt) = δ̂t, which we call the
bottleneck edge. This edge is unique as long as all edges
have unique weights, except for when events happen.
We separate the remaining edges into the sets

Lt = E(Ĝt) \ E(M t), and

U t = E \ E(Ĝt) = {e ∈ E | ct(e) > δ̂t}

so that E = Lt ⊔M t ⊔ U t.
The kinetic hourglass consists of the following kinetic

max heap and kinetic min heap. The lower heap HL

is the max heap containing Lt ⊔ M t = E(Ĝt). The
upper heap HU is the min heap containing U t ∪ {ê}.
See Figure 3 for an example of this construction. Note
that ct(ê) = max{ct(e) | e ∈ Lt ⊔ M t} and ct(ê) <
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Scenario Kinetic Heap Kinetic Hanger

Lines O(n log2 n) O(n log2 n)

Line segments O(n
√
m log3/2 m) O(nα(m) log2 m)

s-intersecting curves O(n2 log2 n) O(λs(n) log
2 n)

s-intersecting curve segments O(mn log2 m) O(n/mλs+2(m) log2 m)

Table 1: Deterministic complexity of the kinetic heap and expected complexity of the kinetic hanger. Here, n is the
total number of elements, m denotes the maximum number of elements stored at a given time, s is a constant.

min{ct(e) | e ∈ U t}, meaning that ê is the root for both
heaps.

Figure 3: Illustration of construction of the kinetic hour-
glass.

3.1 Certificates

The certificates for the kinetic hourglass (i.e., properties
held by the data structure for all t ∈ [0, T ]) are

1. All max-heap certificates for HL and min-heap cer-
tificates for HU .

2. Both heaps have the same root, denoted rt.

3. The edge rt is the edge with bottleneck cost; i.e.,
rt = êt where ct(êt) = δ̂t.

Assuming the certificates are maintained, rt and êt

are the same edge. However, in the course of proofs,
bottleneck edge of the matching is denoted by êt, while
we use rt for the edge stored in the root of the two heaps
(or rt(HU ) and rt(HL) when a distinction is needed).

3.2 Events

For a particular event time t, we denote the moment of
time just before an event by t− = t − ε and the mo-
ment of time just after by t+ = t + ε. For two edges,
we write a ≼t b to mean that ct(a) ≤ ct(b). The two
heaps have their own certificates, events (both inter-
nal and external), and updates as in the standard set-
ting. Our main task of this section is to determine which
events in the heaps lead to an external event in the hour-
glass. We define the external events for the hourglass
as those events in HU and HL which lead to changes
of the root, rt. Thus, internal events are those which
do not affect the roots; i.e., rt

−
(HU ) = rt

+

(HU ) and

rt
−
(HL) = rt

+

(HL).

We first show that an internal event of HU or HL is
an internal event of the hourglass.

Lemma 7 If the event at time t is an internal event of
HU or HL and the kinetic hourglass satisfies all certifi-
cates at time t−, then the edge giving the bottleneck dis-
tance for times t− and t+ is the same; that is, êt

−
= êt

+

.

Proof. Following the previous notation, we have bot-
tleneck distances before and after given by δ̂t

−
=

ct
−
(êt

−
) and δ̂t

+

= ct
+

(êt
+

). Because we start with

a correct hourglass, we know that êt
−

= rt
−
(HU ) =

rt
−
(HL) = rt

−
. By definition, an internal event in

either heap is a swap of two elements with a parent-
child relationship but for which neither is the root so
the roots remain unchanged; that is, rt

−
= rt

+

so we
denote it by r for brevity. This additionally means
that no edge moves from one heap to the other, so the
set of elements in each heap does not change and thus
Gct− (r) = Gct+ (r). Again for brevity, we write this sub-

graph as Γ.
We need to show that this edge r is the one giving

the bottleneck distance at t+, i.e. δ̂t
+

= ct
+

(r) or equiv-

alently that r = êt
+

. All edges of the perfect matching
from t−, M t− , are contained in Γ; thus M t− is still a
perfect matching at time t+. We show that any min-
imal cost perfect matching for t+ must contain r, and
thus M t+ is a minimal cost perfect matching. Since r
is êt

−
, by removing r, Γ\{r} will cease to have a perfect

matching, else contracting the minimality of the perfect
matching at t−. But as the order is unchanged, this
further means that for time t+, lowering the threshold
for the subgraph Γ = Gct+ (r) or equivalently removing

the edge r will not have a perfect matching, finishing
the proof. □

The remaining cases to consider are external events
of HU and HL, when a certificate in one of the heaps
involving the root fails. This can be summarized in the
three cases below. In each case, denote the root at time
t− as r = rt

−
.

1. (L-Event) Swap priority of r and an e ∈ Lt in HL;
i.e. e ≼t− r and r ≼t+ e.

2. (M -Event) Swap priority of r and an e ∈ M t in
HL; i.e. e ≼t− r and r ≼t+ e.
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3. (U -Event) Swap priority of r and an e ∈ U t in HU ;
i.e. r ≼t− e and e ≼t+ r.

In the remainder of this section, we consider each of
those events and provide the necessary updates. The
simplest update comes from the first event in the list,
since we will show that no additional checks are needed.

Lemma 8 (L-Event) Assume we swap priority of r =

rt
−
and an e ∈ Lt− at t; i.e. e ≼t− r and r ≼t+ e. Then

e moves from HL to HU , and r remains the root and is
the edge with the bottleneck cost for t+, i.e., rt

+

= êt
+

.

Proof. Denote M = M t− . In this case, e is an edge
in the lower heap but e ̸∈ M . Because r ≼t+ e, in
order to maintain the heap certificates, either e needs
to be inserted into the upper heap with r remaining as
the root; or if e remains in the lower heap, it needs to
become the new root. Note that although they swap
orders, the graph thresholded at the cost of r at t− and
the graph thresholded at the cost of e at t+ are the
same; i.e. Gct− (r) = Gct+ (e). In addition, Gct+ (r) =

Gct+ (e) \{e}. However, since e /∈ M , M is still a perfect

matching in Gc+(r). If there exists a perfect matching in
Gct+ (r) \ {r}, this would constitute a perfect matching

at time t− which has lower cost than M , contradicting
the assumption that M is a minimal cost matching for
that time. Thus M is a minimal cost matching for time
t+. □

Lemma 9 (M-Event) Assume we swap priority of

r = rt
−

and an e ∈ M t− at t; i.e. e ≼t+ r and r ≼t− e.
Let G′ = Ĝt− \ {e} be the graph with e = (u, v) re-
moved. Exactly one of the following scenarios happens.
(See Figure 4 and 5 for examples of the two scenarios.)

1. There exists an augmenting path P in G′ from u to
v. Then e moves into the upper heap (e ∈ U t+),

the root remains the same (êt
+

= rt
+

= r), and
the matching is updated with the augmenting path,
specifically M t+ = Aug(M t− , P ).

2. There is no such augmenting path. Then M t+ =
M t− and êt

+

= rt
+

= e; i.e. the only update is that
r and e switch places in the lower heap.

Lemma 10 (U-Event) Assume we swap priority of

r = rt
−

and an e ∈ U t− at t; i.e. r ≼t− e and e ≼t+ r.
Let G′ = Ĝt− ∪ {e} \ {r} be the graph with r = (u, v)
removed and e included. Exactly one of the following
events happens.

1. There exists an augmenting path P from u to v.
Then r moves into the upper heap (r ∈ U t+), e

becomes the root (êt
+

= rt
+

= e), and the match-
ing is updated with the augmenting path, specifically
M t+ = Aug(M t− , P ).

Figure 4: Illustration of Scenario 1 of and M -Event; see
Lemma 9.

Figure 5: Illustration of Scenario 2 of M -Event; see
Lemma 9.

2. There is no such augmenting path. Then M t+ =
M t− and e moves into the lower heap (e ∈ Lt+),

and the root remains the same (êt
+

= rt
+

= r).

We have included the proofs of the above lemmas in
Appendix A and B. For further details, see [25]

3.3 Complexity and Performance Evaluation

The kinetic hourglass builds on the kinetic heap and
hanger frameworks [12], with complexities derived by
multiplying the number of events by the O(log n) event
processing time (Table 1). In contrast, the hourglass re-
quires O(m) work per external event due to augmenting
path searches, replacing the logn factor with m.

For a bipartite graph with m edges, we treat
m = n and analyze each edge’s behavior only dur-
ing its presence in a heap. This leads to com-
plexities summarized in Table 2: for linear weights,
O(m2

√
m log3/2 m) using heaps and O(m2α(m) logm)

with hangers; for s-intersecting curves, O(m3 logm) and
O(mλs+2(m) logm), respectively.

Despite being responsive, local, and compact, the
hourglass is not efficient due to its linear per-event cost.
We conjecture that amortized analysis may reduce this,
though it remains an open problem.
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Scenario Kinetic Heap Hourglass Kinetic Hanger Hourglass

Line segments O(m5/2 log1/2 m) O(m2α(m) logm)
s-intersecting curve segments O(m3 logm) O(mλs+2(m) logm)

Table 2: Deterministic complexity of the kinetic heap hourglass and expected complexity of the kinetic hanger
hourglass.

4 Kinetic Hourglass for Persistent Homology Trans-
form

We apply the kinetic hourglass to compute the inte-
grated bottleneck distance between two 0-dimensional
persistent homology transforms (PHTs) [11, 17, 26], a
directional transform shape signature derived from sub-
level set filtrations. For simplicity, we focus on con-
nected, embedded graphs in R2 whose PHTs are com-
posed of 0-dimensional persistence diagrams.

Each unit vector ω ∈ S1 induces a height function
hω on the vertices of a simplicial complex K, result-
ing in a lower-star filtration and a persistence diagram
Dgm(hK

ω ). The PHT is the function PHT(K) : ω 7→
Dgm(hK

ω ). The integrated bottleneck distance between
two PHTs is

dB(PHT(K1),PHT(K2)) =

∫ 2π

0

dB
(
Dgm(hK1

ω ),

Dgm(hK2
ω )

)
dω

which is stable under small vertex perturbations.
To enable tractable runtime analysis, we restrict our

attention to star-shaped complexes, where each persis-
tence vineyard exhibits trivial geometric monodromy [4].
In this case, each off-diagonal persistence point traces a
continuous curve (vine) over S1.
We construct a complete bipartite graph G whose ver-

tices correspond to vines and their diagonal projections
from the PHTs of K1 and K2. The edge weights are de-
termined by ℓ∞ distances between points on the vines at
a given direction ω. This reduces the integrated bottle-
neck distance computation to maintaining a minimum-
cost matching in G across all directions ω. Figure 6
gives an example of the pipeline.

Given at most 2n vines from each complex, G has
O(n2) edges, leading to O(n6 log n) runtime for the ki-
netic hourglass using heaps. See Appendix C for full
definitions of the filtration, stability, and geometric in-
terpretation of the PHT.

5 Conclusions

In this paper, we introduced the kinetic hourglass, a
novel kinetic data structure designed for maintaining
the bottleneck distance for graphs with continuously
changing edge weights. The structure incorporates two
kinetic priority queues, which can be either the deter-

Bipartite Graph

Figure 6: Example of edge weight functions in the bi-
partite graph induced by two PHTs.

ministic kinetic heap or the randomized kinetic hanger.
Both versions are straightforward to implement.

In the future, we hope to improve the runtime for
this data structure. In particular, the augmenting
path search requires O(n) time, falling short of the
efficiency goals in the kinetic data structure (KDS)
framework. Moreover, when comparing PHTs with n
vertices, the kinetic hourglass holds n2 elements, which
can be computationally expensive. This method can
immediately be extended to study the extended persis-
tent homology transform (XPHT) to compare objects
that have different underlying topologies [27], however
there is much to be understood for the structure of the
vines in the PHT and how this particular structure
can deal with monodromy. Further, the nature of
this data structure means that it is not immediately
extendable to the Wasserstein distance case, however,
we would like to build a modified version that will
work for that case. Finally, since the kinetic hourglass
data structure also has the potential to compare more
general vineyards that extend beyond the PHT, it will
be interesting in the future to find further applications.

Acknowledgment EXW acknowledges support from
the Austrian Science Fund (FWF) grant number
P 33765-N.

References

[1] P. K. Agarwal, M. De Berg, J. Gao, L. J. Guibas, and
S. Har-Peled. Staying in the middle: Exact and ap-
proximate medians in R1 and R2 for moving points. In
CCCG, pages 43–46, 2005.



368 CCCG 2025, Toronto, Canada, August 13–15, 2025

[2] P. K. Agarwal, J. Gao, and L. J. Guibas. Kinetic medi-
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Appendix

A Proof of Lemma 9

Proof. Let M ′ = M t− \ {e}. Then M ′ is a matching of
size n− 1 in G′ (hence it is not perfect), and the unmatched
vertices are u and v.

If there exists an augmenting path P from u to v, augment
M ′ by replacing M ′∩P with P \M ′ to make a new matching
M ′′. This increases |M ′| by 1 and thus M ′′ is a perfect
matching. Note that if r ∈ P , then M ′′ is also a perfect

matching in t− with strictly cheaper cost than M t− ; but
this contradicts the assumption of r giving the bottleneck
distance. Thus we can assume that r ∈ M ′′, and all edges in
the lower heap have cost at most that of r. This means that

r is still the bottleneck edge of the matching, i.e. ct
+

(r) =

max{ct
+

(e) | e ∈ M ′′}.
Assume instead that there is no augmenting path in G′

from u to v. Then M ′ is a maximum matching for G′ by
Theorem 4, however it is not perfect. Note that because

G′ = Ĝt− \ e and e and r have swapped places, we have
that G′ = G

ct
+

(r)
. Therefore, there is no perfect matching

for G
ct

+
(r)

. However, M t− is a perfect matching at time

t− and Ĝt− = G
ct

+
(e)

, it still is a perfect matching at t+

for G
ct

+
(e)

. Moreover, ct
+

(e) = max{ct
+

(e) | e ∈ M t+}.

Therefore, e = êt
+

= rt
+

becomes the root, and r becomes
a child of the root e in HL. □

B Proof of Lemma 10

Proof. Let M ′ = M t− \{r}, and again M ′ is a matching of
size n− 1 in G′ (hence it is not perfect), and the unmatched
vertices are u and v.

Similar to the M -Event, if there exists an augmenting
path P from u to v, augment M ′ by replacing M ′ ∩ P with
P \M ′ to make a new matching M ′′. This increases |M ′| by
1; thus, M ′′ is a perfect matching. Further, because G′ =

Ĝt−∪{e}\{r} and e and r have swapped places, we have that

G′ = G
ct

+
(e)

. Moreover, ct
+

(e) = max{ct
+

(e) | e ∈ M ′′}.

Therefore e = êt
+

= rt
+

, and r gets moved down to HU and
becomes a child of e.

Assume instead that there is no augmenting path in G′

from u to v. Then M ′ is a maximum matching for G′ by
Theorem 4, however it is not perfect. Therefore, there is

no perfect matching for G
ct

+
(e)

. However, M t− is a perfect

matching at time t− and Ĝt− = G
ct

+
(r)

\ {e}, it still is a

perfect matching at t+ for G
ct

+
(r)

. This is thus an internal

event; we move e to HL as a child of r, and r remains the

bottleneck edge, i.e. ct
+

(r) = max{ct
+

(e) | e ∈ M ′′}. □

C Persistent Homology Transform

C.1 Lower-Star Filtration and PHT Definition

Let K be a finite simplicial complex embedded in R2. For
any direction ω ∈ S1, the height function hω : |K| → R is

defined by hω(x) = ⟨x, ω⟩. The lower-star filtration induced
on the abstract complex K is given by:

hω(σ) = max{hω(v) | v ∈ σ},

and the sublevelset at height a is the full subcomplex induced
by vertices {v ∈ K | hω(v) ≤ a}. FilteringK by hω produces
a persistence diagram Dgmk(h

K
ω ). We focus on k = 0, where

the input can be assumed to be a connected graph, so each
diagram contains a single point at infinity.

The persistent homology transform (PHT) is defined as:

PHT(K) : S1 → D, ω 7→ Dgm(hK
ω ),

where D is the space of persistence diagrams. The PHT is
injective [11,26], making it a faithful shape representation.

C.2 Stability of the Bottleneck Distance

Assume two geometric realizations f1, f2 : K → R2 of the
same abstract complex K. For a fixed ω, define hi,ω =
⟨fi(·), ω⟩. Then:

∥h1,ω − h2,ω∥∞ ≤ max
v∈V

∥f1(v)− f2(v)∥∞.

By the stability theorem for persistence diagrams [9], we
have:

dB(Dgm(hK1
ω ),Dgm(hK2

ω )) ≤ max
v∈V

∥f1(v)− f2(v)∥∞,

and integrating over ω yields the global bound on the PHT
distance:

dB(PHT(K1),PHT(K2)) ≤ 2πmax
v∈V

∥f1(v)− f2(v)∥∞.

C.3 Point Tracking and Geometry of Diagrams

In a lower-star filtration, a k-dimensional homology class
born at τ and dying at σ corresponds to a birth-death pair
(b, d) in the diagram, where b = hω(vb) and d = hω(vd) for
unique vertices vb and vd. Thus, each off-diagonal point can
be traced to a pair of vertices.

As ω varies, each such point traces a curve:

x(ω) = (⟨vb, ω⟩ , ⟨vd, ω⟩),

which parametrizes an ellipse. The projection to the diago-
nal is also a degenerate ellipse:

x′(ω) = (⟨(vb + vd)/2, ω⟩ , ⟨(vb + vd)/2, ω⟩) .

C.4 Trivial Geometric Monodromy and Star-Shaped
Domains

Following [4], a simplicial complex K is star-shaped if there
exists c ∈ |K| such that for all x ∈ |K|, the segment
[c, x] ⊆ |K|. For such K in general position, PHT(K) has
trivial geometric monodromy: there exist continuous func-

tions {γi : S1 → R2} (vines) such that the off-diagonal points
of Dgm(hK

ω ) are exactly {γi(ω) | γi(ω) /∈ ∆}.

Theorem 11 ( [4]) Let K be a star-shaped complex with
vertices in general position. Then PHT(K) has trivial geo-
metric monodromy.
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Each vine either never intersects the diagonal or intersects
it exactly once entering and once exiting. For connected K,
one vine is of the form (γ̃(ω),∞). A vertex v is extremal if
it gives birth to a class for some ω, and the number of vines
N is at most the number of such extremal vertices:

N ≤
∣∣∣extK(V )

∣∣∣ .
C.5 Matching Construction and Cost Function

Given PHTs for K1 and K2 with n1 and n2 vines respec-
tively, we build a complete bipartite graph G with 2n1+2n2

vertices—each vine and its diagonal projection. The edge
weight between two vines γu and γv at direction ω is:

c(u, v) =


∥γu(ω)− γv(ω)∥∞ if one or both are off-diagonal

∥γu(ω)−∆∥∞ if γv(ω) ∈ ∆

∥γv(ω)−∆∥∞ if γu(ω) ∈ ∆

0 if both are at ∆.

At each ω, this graph realizes the bipartite matching prob-
lem described in Sec. 2.1. With n = max(n1, n2), we have
O(n2) edges, so the kinetic hourglass maintains O(n2) ele-
ments and runs in O(n6 logn) time using heaps.
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